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Summary 

Rapid, cost-effective biomanufacturing of products like therapeutics, materials and lab-grown 

foods depends on optimizing cell culture media, a complex and expensive task due to the 

combination of components and processing variables. This is especially important for 

therapeutic production using mammalian systems like Chinese Hamster Ovary (CHO) cells, 

where long development timelines contribute to high drug costs. Using Bayesian Optimization 

(BO), adapted for bioprocess applications, our method supports multiple parallel experiments 

and incorporates thermodynamics-based constraints on media solubility to ensure feasible 

medium formulations. The approach is validated both in-silico and in experimental bioreactor 

settings, showing improved product titers compared to classical design of experiments (DOE) 

methods. This work bridges machine-learning and physical modeling to create a more data-

efficient process optimization strategy. The integration of this method into biomanufacturing 

pipelines together with robotics-assisted bioreactors paves the way for automated bioprocess 

optimization and more rapidly available and affordable biotherapeutics. 

 

1. Introduction: 

Biotherapeutics have emerged as one of the most effective and important pharmaceutical 

categories of the 21st century. Their ability to treat a variety of diseases, from infectious 

diseases such as COVID19 to chronic diseases and cancer, have made them versatile tools in the 

fight against disease. Furthermore, biologics have surpassed small molecules in sales as the 

dominant treatment modality in disease areas such as solid tumor cancers1. Despite this fervent 

growth there remain challenges related to the cost and development timelines for these 

products2. This is due in part to the complexity of manufacturing these products at scale, where 

inefficiencies can drive up costs significantly, posing a serious challenge for bioprocess 

engineers and companies. 

The single largest biopharmaceutical product category, monoclonal antibodies, are 

manufactured primarily by culturing Chinese Hamster Ovary (CHO) cells which generate the 

recombinant biotherapeutic while growing in industrial bioreactors3,4. Implementing an 

efficient biomanufacturing process requires time consuming and expensive experiments to 
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identify and develop the right combination of cell line and process variables that produce high 

product yields. One of the key process factors affecting final product yields is the culture media 

formulation.  Indeed, media development is a cornerstone in the development of optimized 

mAb manufacturing bioprocesses, as the varied components of the medium have been shown 

to have strong effects on cell health, growth, mAb titers as well as product quality 

attributes5,6,7. Developing media tailored to a specific mAb product or cell line can be a long, 

time consuming and expensive trial-and-error endeavor.  

One means to reduce media development costs is to apply mathematical models to 

describe the bioproduction of monoclonal antibodies. Traditional approaches to model-based 

bioprocess optimization often rely on mechanistic models to predict cell behavior and the role 

of process parameters8,9. While these models can offer valuable insights into the impact of 

media components, as we and others have shown in previous efforts10,11,12 their applicability in 

media design is limited by stringent assumptions about metabolism due to the constraints of 

the models, whether they are genome scale or kinetic in nature11,13,14. These models often offer 

limited flexibility to describe the variation in cell metabolism that may occur over a bioreactor 

run. Furthermore, building these models often requires either large or very tailored -omics and 

time-series datasets in order to parameterize the model to a particular cell line, product, and 

specific culture conditions9,14. As a consequence, researchers have resorted to space-filling 

designs and extensive rounds of design of experiments (DOE)15. Although effective, these 

methods are resource-intensive, requiring numerous experiments and rigid experimental 

design frameworks to pinpoint optimal conditions. For example, Box-Behnken design, 

commonly used in DOE, requires a minimum of 2n(n-1) experiments for n variables. This 

presents a substantial challenge, given the vast number of nutrients and optimization design 

space created by the unique requirements of different cell lines and bioproducts. 

 

In response to these challenges, the field is increasingly looking to data-driven 

methodologies. Machine learning, with its ability to handle diverse datasets and uncover 

complex patterns, presents a promising alternative. Specifically, Bayesian Optimization (BO) has 

emerged as a powerful tool for navigating high-dimensional design spaces with minimal 

data16,17. BO balances notions of exploration and exploitation, as well as a principled 

methodology for data-efficient experimental design based on uncertainty quantification. 

Therefore, BO is usable with limited experimental budgets, making it an ideal candidate for 

sequential experimental design, especially in contexts where experiments are costly and time-

consuming like chemical or biological systems18,19,20,21. While data-driven approaches hold 

promise, these approaches usually are developed in different contexts and for applications such 

as image processing or text-modeling, often in purely in-silico environments19,22,23. As a 
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consequence, relatively little effort has been made to leverage the power of data-driven 

methods in biomanufacturing.  

In this paper we propose an approach to address a bioprocess optimization problem, 

specifically culture media formulation, using uncertainty-based machine learning models. Our 

method leverages Bayesian Optimization and we adapt it for bioprocess applications in order to 

facilitate more efficient experimental design of media formulation. Key features of our 

approach include the ability to conduct multiple parallel experiments, which leverage a Multi-

Scale Multi-Recommendation algorithm (MSMR) and existing parallelized cell culture 

experimental equipment. The Bayesian Optimization approach is used to evaluate the roles of 

different process inputs, including specific amino acid media levels and carbon dioxide 

concentration. Indeed, mammalian cell culture media formulation optimization involves amino 

acid levels in addition to glucose and other components such as vitamins. Here, machine 

learning and Bayesian Optimization offers the opportunity to identify the ideal nutrient 

concentrations through enhanced experimental design more efficiently.     

Unfortunately, amino acid levels in media formulation are subject to additional 

constraints in the form of thermodynamic solubility limits.  Indeed, precipitation of amino acids 

can result in poor biomanufacturing runs and lost batches of media formulation which are even 

more problematic during scale-up.  Furthermore, the presence of specific amino acids can alter, 

either positively or negatively, the solubility limits of other amino acids. This results in mixtures 

of amino acids that can either expand or reduce the media design space that is possible. 

Therefore, for this study, we combined a thermodynamic activity coefficient model, developed 

by our group, with the machine learning approach. This consideration of thermodynamic 

solubility limits ensures our machine learning algorithm suggests only feasible media 

formulations based on precipitation constraints for specific amino acid combinations.  

In this study, we first demonstrate our method's efficacy using in-silico simulations 

based on a dynamic flux model of CHO cell metabolism.  Next we applied the approach under 

actual experimental media design conditions for relevant high throughput bioreactor operating 

conditions. Our findings demonstrate that a machine learning-guided approach, when paired 

with a thermodynamic-solubility constraining algorithm, can significantly improve the 

effectiveness of bioprocess media design in terms of a final target protein product titer, 

outperforming space-filling, a traditional DOE framework. 

The integration of machine learning and advanced thermodynamic solubility systems together 

with robotics-assisted automated bioreactors using Bayesian Optimization techniques 

represents a transformative approach in media design and development for industrially-

relevant CHO bioprocess optimization and mammalian bioproduction platforms in general. 

Through these example cases, we demonstrate the impact that data-driven optimization can 
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have on biomanufacturing, offering a glimpse into a future where laboratory automation and 

advanced machine learning techniques drive rapid data optimization techniques to accelerate 

development of improved biomanufacturing processes for next generation biotherapeutics 

needed for future pandemics and complex disease treatments.   

 

2. Model description - Validation of Bayesian Optimization with in-silico metabolic model 

and in-vitro experiments 

 

A hybrid media optimization approach using Bayesian Optimization was developed in three 

key steps. First, the in-silico mechanistic model was employed to simulate the bioprocess and 

fine-tune the optimization parameters using BO. Next, a thermodynamic model of amino acid 

solubility was incorporated to constrain the experimental design space, ensuring that only 

feasible and soluble medium formulations were considered. Finally, the refined models were 

applied in experimental settings, with adjustments made to enhance the accuracy and 

performance of the optimization 

2.1 Utilizing a mechanistic metabolic model to represent different metabolic conditions 

In order to test the feasibility and utility of Bayesian Optimization (BO) for experimental 

design in bioprocess applications, we employed a CHO model for in-silico testing. This model 

was developed by the authors to simulate the metabolic behavior of CHO cells under different 

cell media and feeding strategies24. This mechanistic model describes CHO cell behavior by 

employing both linear equations for maintaining mass balance of intracellular metabolites, as 

well as kinetic equations to model precisely known enzymatic reactions in the central energy 

metabolism of the cell. The model is designed with a set of parameters specifically fitted for 

CHO cell lines under various media and feeding conditions. While the simulation does not 

match perfectly all the experimental data using a single parameter set, it provides a reasonable 

representation of cell metabolic behavior, including amino acid consumption, cell growth, and 

titer production. Therefore, this mechanistic model is well-suited for use in in-silico experiments 

to predict a time-series of nutrient profiles and effectively simulate the metabolic processes of 

CHO cells under different media compositions and with different initial media compositions. 

The results of these in-silico experiments will provide useful/appropriate parameters to be used 

in subsequent in-vitro high throughput bioreactor validation studies. 

The solution spaces of media components of interest were defined for both in-silico and 

in vitro experiments before initiating the Bayesian Optimization. The upper limit of each 

component is bounded by its solubility as described in section 2.5 below. 

2.2 Bayesian Optimization campaign and Prediction Update Policy 
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A Bayesian Optimization campaign involves a series of iterative experiments aimed at 

optimizing a specific objective. Each iteration involves selecting a set of input parameters, 

conducting experiments or simulations, observing the outcomes, and updating the probabilistic 

model based on the new data. This approach relies on prior input/output distributions and the 

likelihood of the observed data to calculate the posterior distribution, guiding the prediction 

process in subsequent iterations. In this  use-case for BO, our input variables are the 

concentration of several basal medium components which will be varied to maximize our 

measured output: Immunoglobulin G (IgG) protein titer produced by our CHO cells. 

By utilizing prior knowledge and continuously refining the probabilistic prediction model 

based on existing and acquired data, a Bayesian Optimization media campaign is more flexible 

and should require fewer total conducted experiments than traditional DOE methods which are 

not dynamically responsive to outcomes. To guide the BO towards accurate predictions, various 

sets of basal media compositions, well-spaced within the defined solution space, were 

arbitrarily chosen for an initial round of experiments. The titer of IgG produced at the end of 

seven days in both in-silico and in-vitro experiments was recorded as one of the optimization 

objectives for the BO campaign. The model learns a mapping between input media components 

and output titer by performing regression using Gaussian Processes (GP). By maximizing the 

conditional probability of the model given the data collected, the mean of the GP model and 

associated variance can be calculated and used to predict titer of each input formulation along 

with uncertainty for each prediction: 

𝑦~𝐺𝑃(𝜇(𝑥), 𝑘(𝑥, 𝑥′′))             (1) 

𝐻𝑒𝑟𝑒 𝑦 𝑖𝑠 𝑡ℎ𝑒 𝑡𝑖𝑡𝑒𝑟 𝑤𝑖𝑡ℎ 𝑚𝑒𝑎𝑛 𝜇(𝑥), 𝑥 𝑖𝑠 𝑣𝑒𝑐𝑡𝑜𝑟 𝑜𝑓 𝑡ℎ𝑒 𝑐𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑛𝑢𝑡𝑟𝑖𝑒𝑛𝑡𝑠, 

𝑘 𝑖𝑠 𝑡ℎ𝑒 𝑐𝑜𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 (𝑜𝑟 𝑘𝑒𝑟𝑛𝑒𝑙) 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛. 

To update the prediction policy with given data and improve the accuracy of the next iteration 

cycle, the posterior mean and variance distributions at unseen input points of next iteration can 

be defined by: 

𝜇(𝑥) = 𝑘𝑇 ∗ (𝐾 + 𝜎𝑛
2 ∗  𝐼)−1 ∗ 𝑦                          (2) 

𝜎2(𝑥∗) = 𝑘(𝑥∗, 𝑥∗) − 𝑘𝑇 ∗ (𝐾 + 𝜎𝑛
2 𝐼)−1 ∗ 𝑘                   (3) 

𝐻𝑒𝑟𝑒 𝜇 𝑖𝑠 𝑡ℎ𝑒 𝑢𝑝𝑑𝑎𝑡𝑒𝑑 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛, 𝑘 𝑖𝑠 𝑡ℎ𝑒 𝑐𝑜𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑 𝑎𝑛𝑑 𝑢𝑛𝑠𝑒𝑒𝑛  

𝑝𝑜𝑖𝑛𝑡𝑠, 𝐾 𝑖𝑠 𝑡ℎ𝑒 𝑐𝑜𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 𝑚𝑎𝑡𝑟𝑖𝑥 𝑜𝑓 𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑 𝑑𝑎𝑡𝑎, 𝜎𝑛
2 𝑟𝑒𝑝𝑟𝑒𝑠𝑒𝑛𝑡𝑠 𝑛𝑜𝑖𝑠𝑒 𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒,  

𝑎𝑛𝑑 𝐼 𝑖𝑠 𝑡ℎ𝑒 𝑖𝑑𝑒𝑛𝑡𝑖𝑡𝑦 𝑚𝑎𝑡𝑟𝑖𝑥. 

The covariance function, k, measures the similarity between pairs of points in the input 

space, and K is the covariance matrix which stores all the pairwise evaluations of k for the 
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whole training data. These two functions allow us to calculate mean and variance given data. 

The Matern kernel implemented in Python Packages Scikit-Learn25 and BayesOpt26 was used 

due to its flexibility and ability to work on complex real-life systems such as chemical reaction 

systems18,20,21.  

Posterior means and uncertainties in equation (2) and (3) were leveraged to decide on 

the best experiments to conduct with respect to an objective (e.g. maximizing titer), given the 

data collected so far. The choice of the next experiment to conduct was made by an acquisition 

function (AF) which suggests the next experiment with the most utility.  

2.3 Exploratory and Exploitative Modes in Bayesian Optimization 

In a BO campaign, the ‘explore v.s. exploit’ tradeoff plays a crucial role. Exploratory BO 

involves designing experiments in unexplored areas of the design space, which can lead to the 

discovery of promising candidates in unexpected regions. This approach emphasizes ‘exploring 

the unknown.’ On the other hand, an exploitative algorithm focuses on optimizing the objective 

(such as maximizing titer), prioritizing regions of the design space that are likely to yield high 

performance based on existing data. This approach emphasizes ‘exploiting the known.’ 

While there can be multiple rounds of exploration and exploitation, a two-iteration BO 

campaign was employed in this paper to demonstrate BO’s efficiency time-wise. The first 

iteration prioritized exploration, aiming to investigate new regions of the design space. The 

second iteration focused on exploitation, concentrating on areas with a high probability of 

optimizing the titer. 

This ‘explore-exploit’ paradigm is formalized and explained through the expressions of 

our chosen acquisition function, upper-confidence bound, UCB. An acquisition function acts as 

a measure of the utility for each possible experimental design given the data. The UCB 

acquisition function is  specifically parametrized by a single parameter κ, kappa as denoted in 

Equation 4: 

𝑎(𝑥) = 𝜇(𝑥) +  𝜅 ∗ 𝛿(𝑥)                       (4) 

𝐻𝑒𝑟𝑒 𝑎 𝑖𝑠 𝑡ℎ𝑒 𝑚𝑒𝑎𝑠𝑢𝑟𝑒 𝑜𝑓 𝑡ℎ𝑒 𝑢𝑡𝑖𝑙𝑖𝑡𝑦 𝑜𝑓 𝑠𝑎𝑚𝑝𝑙𝑖𝑛𝑔 𝑖𝑛 𝑡ℎ𝑒 𝑛𝑒𝑥𝑡 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛, 𝑎𝑛𝑑 𝛿  

𝑖𝑠 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛.  

The utility measured by the acquisition function a is a function of the predicted mean µ and 

uncertainty σ (standard deviation) of the Gaussian Processes. κ is selected by users to be high 

when exploration is desired, resulting in high value of a, for areas of high uncertainty (standard 

deviation term dominates). Conversely, κ is then selected to be low when exploitation is 

desired, prioritizing areas of high prediction of the mean of the GP (mean term dominates). 

After data is collected and regression with GP is complete, the algorithm uses the acquisition 
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function to generate the utility of each point. The point of maximum utility is the BO 

algorithm’s choice for the next experimental measurement to be taken. A demonstration of the 

effect of κ on selected experiments is shown in Supplemental Figure 1. 

The suggested media formulation then is evaluated, obtaining the associated titer. The 

data is then added to the model by regression for the second iteration. This paradigm can be 

repeated in a loop until a desired number of experiments is reached to increase prediction 

confidence. At the end of a campaign, a retroactive analysis of the experiments selected by the 

BO algorithm can be conducted to understand the choices made by the algorithm and to 

compare to alternative experimental design approaches such as different space-filling designs. 

2.4 Multiple recommendations 

BO is classically formulated as a sequential-sampling optimization problem. That is, only 

one design is suggested at a time by the acquisition function. This works well for optimizing 

expensive mathematical functions or scientific models where single model evaluations take 

relatively short time intervals and can be done repeatedly. In our case, a single cell culture 

experiment can take from three to four weeks due to the length of a single bioprocess (~7-14 

days) and associated preparations (media adaptation, ~9-12 days). Therefore, it is desirable to 

leverage the parallelized nature of cell culture experimental setups which allow us to run 

multiple bioprocesses at the same time. In our case, using the Sartorius Automated Micro-

Bioreactor (AMBR) system, we can run up to 48 reactors at once. So, to design a more tailored 

bioprocess-specific BO algorithm, a batched-recommendation approach was selected to make 

use of parallelized resources available in laboratory setups. MSMR was chosen as it is shown to 

be superior to other batched-Bayes approaches such as local-penalization and Kriging-believer 

algorithms17,27. It allows us to not make assumptions about the underlying input-output (media-

titer) function by sampling multiple length-scales. The length scale is a parameter of the 

Gaussian Process’s covariance function k (Eq. 1, 2, 3). It represents the underlying smoothness 

of the input-output function, or how much the measured output is expected to vary with small 

changes in the input. A series of different length scales are chosen by the MSMR to cover a 

broad range of assumptions about smoothness, and different experiments are suggested from 

these. The result is a set of diverse experimental recommendations for our parallel bioreactors, 

informed by previously collected data.  

2.5 Thermodynamic model UNIFAC 

The feasibility of medium designs suggested by the BO algorithm was further constrained by 

using thermodynamic models developed by the authors to predict nutrient solubility and 

precipitation concentrations (Ndahiro, et al, submitted manuscript). The thermodynamic model 

used was UNIFAC, a group-based contribution model which uses activity coefficient calculations 
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to predict amino acid solubilities in aqueous mixtures. An extensive database containing both 

literature and experimentally collected data was used to regress interaction parameters, 

generating a robust model. The model can predict the effect of adding one amino acid on the 

solubility of another (or multiple other) amino acid(s) already in solution. By calculating when 

the activity of each amino acid in a multicomponent solution exceeds its solubility limit at a 

given temperature, amino acid precipitation can be anticipated computationally; these 

precipitation concentrations represent upper bounds to the concentrations used in the media 

design experiments. After each BO recommendation, the nutrient composition was fed into the 

UNIFAC model to determine if there is a prediction of precipitation. These experiments were 

then characterized as infeasible.  

3. Results: 

3.1 Bayesian Optimization applied to bioprocess systems In-silico experiments 

Before initiating the expensive laboratory experiments, we leveraged the existing  in-silico 

CHO metabolic models to build a proof-of-concept of BO in bioprocesses. As they pertain to, a 

hybrid model featuring enzyme kinetics and flux balances denoting CHO cell behavior was 

implemented. Incorporating a hybrid approach to model the cell metabolism allows a 

consideration of known cell metabolic kinetics and steady-state balances, resulting in enhanced 

predictions than either approach alone. The model performed particularly well in predicting cell 

metabolism for 7 days in a fed-batch culture24. So, this model was employed as a representative 

simulation environment for our BO campaigns. 

To run a virtual cell medium optimization campaign, impactful medium components 

were selected to vary as a means to test Gaussian Process Modeling and Bayesian Optimization 

Capabilities. Although a different set of nutrients were ultimately tested in the experiments due 

to limitation in nutrient components present in the model, it was worthwhile for the selected 

media nutrients in simulations to have a significant impact on titer so as to clearly showcase the 

ability of BO to identify promising formulations. First, glucose was chosen as it is the main 

energy source of the cell and is crucial to cell growth and therefore production of IgG5,14,28. 

Secondly, asparagine is a non-essential amino acid which serves as a carbon and nitrogen 

source for cell growth and protein production29,30,31. Third, lactate is an important molecule in 

bioprocesses, namely due to its known role in inhibiting cell growth. This often occurs in high 

glucose media as glucose is metabolized into elevated levels of pyruvate. This causes the lactate 

dehydrogenase enzyme to convert pyruvate to lactate and accumulate during the cell culture. 

This leads to slower cell growth and as glucose is depleted, cells shift to consuming lactate28,32. 

Lactate production is linked to glucose consumption, which adds a layer of complexity to the 

optimization problem, a common occurrence in bioprocess optimization. Glucose, asparagine 

and lactate were selected as medium components to vary in these simulations due to their 
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varied roles in cell metabolism, providing for a robust optimization challenge. While adding 

lactate in cell culture is not common, this was done for our in-silico experiments to explore 

whether BO could learn this and design the medium composition accordingly. 

As mentioned in the model description, the ‘explore-exploit’ paradigm is crucially 

important to experimental design in unexplored space, and this can be tuned explicitly using 

BO. To evaluate whether exploration or exploitation was more suited to our task of optimizing 

the levels of glucose, asparagine and lactate in the CHO model media, we simulated an array of 

κ values in the UCB acquisition function and monitored the choices made by the BO algorithm. 

Four κ values, namely 0.1, 1, 3 and 10 were selected to span different orders of magnitude and 

therefore significantly different BO behaviors. A budget of 20 sequential simulated experiments 

(or iterations) were selected and the same initial starting media formulation was chosen for all 

κ values and the BO experiment was initiated. Titer values on day 7 were recorded for each 

simulation. A total of 80 simulations (20 iterations [x-axis] with 4 κ[A,B,C,D]) were run as seen 

in Figure 1. The media composition evaluated, and titer obtained by the BO algorithm for each 

iteration is represented by a datapoint in Figure 1. 

The BO campaigns reveal the different learning behaviors of each κ value over each of 

the 20 experiments. Figure 1A through 1D showed the input concentration of glucose, 

asparagine, and lactate at each simulated experiment, while figure 1E through 1H showed the 

corresponding titer output on day 7. Strikingly, the very exploitative κ value of 0.1 shows very 

limited learning behavior after 6 experiments as indicated by the plateau in titer measurement, 

suggesting the presence of a local maximum. The stagnation that is observed after 6 

experiments in Figure 1E is preceded by experiments that resulted in lower titers as lactate is 

increased (particularly at experiment 4), which likely guided the model to remain in the 

previous areas of higher titers. Conversely, the higher κ values of 1 and 3 showed an ability to 

recover from low titers and continue exploring the design space. Lactate level in both figure 1A 

and 1B converged and remained at a low level as indicated by the green line in figure 1B and 

1C. What’s more, the κ=1 campaign was able to reach almost 0 mM of lactate, which is in line 

with a realistic media formulation. Intriguingly, the κ=1 campaign also stabilized the media 

formulation at moderate levels of glucose (except for occasional excursion to explore higher 

levels) as indicated by the blue line, likely learning the inhibitory effects of high glucose levels 

led to high lactate production. The κ=3 campaign showed similar but more exploratory behavior 

than κ=1. The κ=10 campaign showed erratic behavior as it oscillated between low, medium 

and high values of each metabolite, indicating high levels of exploration but little learning of 

appropriate values of nutrients.  

Another campaign was designed, this time simulating a space-filling experimental 

design. 20 equally spaced points in the 3-dimensional design space were selected and ran on 
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the CHO metabolic model. Since this was a classical space-filling approach, there was no 

sequential experimental design or learning from previous data, and the titers obtained from the 

campaign are shown in Figure 2. The violin plots in Figure 2 from these campaigns indicate that 

the best media designs for titer maximization in general came from the BO campaigns with 

moderate κ value .  Furthermore, titers obtained from the BO-designs were higher on average, 

especially at intermediate κ values, than those obtained with the space-filling method. 

Supplementary Figure 2 shows another in-silico BO experiment which varied κ values but was 

run with 3 different initial media designs at the start of the BO campaigns. A similar trend was 

observed, namely that moderate κ values performed the best in terms of finding high titer 

media formulations, showing that BO’s ability to optimize a bioprocess objective function is 

generally independent of the starting point, given sufficient data. The spread of the BO-

recommended designs selected with 3 different starting media formulations is visualizable in 

the form of a Principal Component Analysis (PCA) in Supplementary figure 3. In this case, low to 

moderate κ values result in a reduced space of medium formulations being selected, while at 

the same time focusing on the most relevant experiments with respect to titer. 

3.2 Implementing multiple recommendation for each BO iteration 

The in-silico BO campaign results were promising and show that, after tuning the BO 

parameters, bioprocesses can be effectively optimized using this experimental design 

framework. However, for this approach to be practical, parallelization of experiments is 

required. While a budget of 20 experiments is reasonable, if these are all conducted 

sequentially, the time required to accomplish these experiments would be prohibitively long.  

Therefore, a framework that recommends batches of experiments would be desirable. 

Different approaches to generate multiple parallel experimental  recommendations 

exist with varying levels of complexity. The Kriging-believer algorithm is one such method. In a 

Kriging-believer framework, like in classical BO, data is collected, and the acquisition function is 

maximized to suggest a candidate experiment33. Now, instead of experimentally generating the 

objective value of the candidate experiment, the objective value is set to the GP’s prediction at 

that candidate point. In other words, the prediction of the model is taken on faith as the ‘real’ 

experimental value, which generates a new maximum for the acquisition function, generating a 

new design candidate. The new candidate design is then also set to the prediction, and so on 

until the required number of recommendations per iteration is reached. While this method is 

simple and intuitive, it has been reported to have limited effectiveness compared to other 

methods17,27.  

Such a method also may suffer from low diversity of recommendations, which is vitally 

important for the GP statistical model/approach to learn a complex design space such as 

bioprocess design. So, other methods such as the Localized Penalty (LP) and Multi-Scale Multi 
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Recommendation (MSMR) approaches27,34 were designed to avoid very similar 

recommendations for each round of recommendations. MSMR was shown by Joy et.al to be 

superior to LP and other parallelization methods27. This method has the added benefit of being 

applicable when there is little known a priori about the shape and smoothness of the 

underlying design-objective space. This is often the case in bioprocess experiments when 

different media components, products or even different cell lines have substantially different 

behavior, yet need to be optimized within a unified framework. MSMR generates multiple 

candidate response functions and proposes a target number of candidates based on their 

diversity. 

The batch-BO framework with the MSMR algorithm was thus implemented for the in-

silico testing ground to investigate the effectiveness of the algorithm. The BO campaign was 

structured to have 10 sequential runs with 4 batches of simulations per run, totalling 40 total 

simulations. The acquisition function was set to UCB with a κ=1, which was shown to be 

relatively exploitative in the non-batched runs. A range of length scale values (smoothness of 

underlying input-output function) of 1e-6 to 1e6 was given as the MSMR’s bounds of search, 

ensuring a wide range of possible functions are explored. The goal of the campaign was to 

maximize titer, with a limited experimental budget, while employing a parallelized 

recommendation approach. The resulting titers from this BO campaign were plotted over each 

iteration in Figure 3A. 

Notably, each candidate media design maximizes an acquisition function associated with 

a length scale that the algorithm selected. The results of the MSMR approach in Figure 3A show 

that the method is indeed able to generate candidates with diverse length scale values (y-axis) 

spanning the range of 1e-6 to 1e6 across the 10 BO iterations (x-axis). While the strength of the 

MSMR algorithm lies in the fact that we do not need to assume the unknown objective-

function’s shape, this also means that many length scale values are used, including unrealistic 

ones. To understand which of the many length scales selected by the MSMR are the most 

effective, a post-campaign analysis was conducted. Over the course of the campaign, the length 

scale values of each BO-selected design were recorded and plotted against the resulting titer 

(Figure 3B). The plot was divided into 4 quarters, separating low and high titers and low and 

high length scale values. The entire campaign resulted in 25 out of 40 BO recommendations in 

the high titer quadrants (set to above 4g/L, Q2 and Q3). Strikingly, 80% of the 25 high titer 

recommendations were from low length scale value (< 1E0) denoted by Q3. Conversely, high 

length scale values (Q1 and Q2) resulted in 12 out of 15  low titers as visible in the first 

quadrant Q1. This suggests that under an exploitative κ=1, ‘low’ length scale values are able to 

better optimize this in-silico bioprocess, implying that the underlying media-titer function may 

be relatively smooth. Intuitively, this agrees with the notion that changes in cell IgG production 

are gradual with respect to changes in media composition with very few big leaps in titer 
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resulting from a small change in media composition. Informed by this model of our real process, 

this restricted range was therefore selected for use in the experimental validation of our BO 

approach. 

3.3 Thermodynamics based design constraints with UNIFAC 

In many optimization problems, including BO, the solution space is often defined within 

a hypercubic space where each variable is confined by specified upper and lower bounds, 

creating a uniform search area. This approach assumes that each variable can be independently 

varied. However, in bioprocess medium optimization, this assumption does not hold true due to 

the complex interactions among different components of the system. Different nutrient 

concentrations, pH, and temperature often influence each other in non-linear and 

interdependent ways. High concentrations can lead to unintended precipitation of nutrients 

that exceed their individual solubilities and create infeasible media formulations. Equally, 

higher concentrations of nutrients may increase the solubility of individual nutrients beyond 

their individual solubilities, resulting in a feasible medium formulation. These interactions can 

create constrained or expanded solution spaces without simple cubic boundaries.  

In these situations, researchers typically apply heuristics based on experience, or even arbitrary 

design constraints. In the case of media design, information on feasible media formulations, 

which provide design constraints, would be advantageous. So, to tailor our BO algorithm to 

consider feasible formulations, we leveraged a chemical group-based thermodynamic model 

developed as a means to predict infeasible media formulations. These infeasible operating 

conditions result from the precipitation of amino acids due to their solubility limits. 

Precipitation is an important factor in cell media formulation as this phenomenon can impact 

cell health, product quality and also lead to nutrients becoming unavailable by precipitating out 

of solution35,36. This is especially problematic in bioprocesses, for example, when an amino acid 

concentration may have positive attributes related with cell growth or titer but cannot be 

dissolved in media. An additional complication is that amino acid solubilities may be altered due 

to interactions between amino acids and result in unexpected precipitation and wasted 

experiments or loss of valuable batches if occurring during scale up.  

To address this solubility challenge, UNIFAC, a group-based contribution model which 

uses activity coefficient calculations, was implemented to predict the solubility levels and 

precipitation of specific amino acids as described above.. Without using this model, the amount 

of amino acid that can be incorporated into the media formulation may be either 

underestimated or overestimated. Taking a two amino acid system as an initial step, current 

approaches simply define a square solution space based on individual amino acid solubilities 

without considering thermodynamic interactions as shown by the dashed-line boundaries in 

Figure 4A and 4B. The dashed edges of this square represent the individual solubilities of amino 
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acids, the upper bound of our medium design space. Meanwhile, the colored areas in the 

figures illustrate how estimating solubility of amino acids independently of one another’s 

impact can lead to errors and inappropriate media designs when thermodynamic solubility 

limits are ignored. Figure 4A illustrates a case of overestimation of the solution space due to 

interactions between two amino acids, which results in an inappropriately expanded design 

space. Conversely, Figure 4B illustrates an underestimation of the solution space caused by 

solubility expansion, where the individual solubility of amino acid A increases due to the 

presence of amino acid B, highlighting the impact of neglecting amino acid solubility 

interactions in the design of feasible medium formulation. Hence, a feasibility function was 

built from UNIFAC to plot soluble regions (green) and insoluble regions (pink) as shown in figure 

4C and 4D to demonstrate using different concentration combinations of phenylalanine and 

glutamine (4C), and glutamine and alanine (4D) respectively. In figure 4C, it is shown that 

glutamine and phenylalanine would negatively impact each other’s maximum solubility through 

their molecular interactions, meaning that less phenylalanine and glutamine should be added 

to the media than expected without these interactions. On the other hand, Figure 4D illustrates 

that glutamine and alanine can interact with each other in a way that enhances each other’s 

maximum solubility, allowing for higher possible concentrations in the media than used in the 

original design.  

In-silico BO campaigns with rigid boundaries based on independent maximum solubility were 

conducted to demonstrate the precipitation-related failure modes of interactions described 

above. In Figure 4C, 20% of the BO-designs were infeasible yet were still sampled by the 

traditional methods. Conversely, in Figure 4D, 13% of feasible design space was ignored 

through conventional methods due to the synergistic solubility effects between glutamine and 

alanine. By incorporating thermodynamic constraints, our experimental design framework 

provides a means for optimizing within the feasible design space, improving the design space 

scope and value of this Bayesian testing algorithm. 

3.4 Experimental validation in AMBR bioreactors 

Previous result sections developed an enhanced BO algorithm with parameters 

compatible with our bioprocesses, the ability to effectively parallelize experimentation though 

MSMR, as well as implementing design space constraints based on thermodynamic 

considerations. This initial analysis enabled us to go beyond computational simulations and 

pursue experimental validation in applicable bioprocess design test cases. For this experimental 

design, the composition of a Chinese Hamster Ovary (CHO) basal media was considered. In 

order to maximize production of a model monoclonal antibody, the most widely used 

biotherapeutic in biotechnology, we started with  a custom medium formulation common for 

commercial applications (see Methods)  but with specific critical amino acids that were missing 
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and available to be varied . The specific amino acids that were missing were Phenylalanine and 

Glutamine, both amino acids whose levels are known to affect cell growth and productivity15,37. 

In addition to these two nutrient variables, the CO2 level in the incubator was varied, which has 

a direct effect on the dissolved CO2 in media, an important factor in cell production 

dynamics38,39. 

The Sartorius Automated Micro-Bioreactor (AMBR) was employed to evaluate multiple 

options for this medium optimization design process. The AMBR system is a powerful high-

throughput robotic platform which is widely used to automate bioprocess tasks such as 

pipetting, passaging, as well as temperature and gas controls. The highly automated reactors 

make it ideal for consistent and standardized data generation, important to machine learning 

algorithms such as our BO approach which are dependent on a high degree of data consistency. 

CHO-K1 cells were thawed in their native Immediate Advantage media and recovered as 

described in Materials and Methods. Cells were thawed in a 30mL shake flask culture with 

regular media for 2 passages and then were transferred into the ABMR bioreactors in BO 

designed media for 2 more adaptation cycles. Data collection was initiated after adaptation, 

and each media condition was run as biological duplicates (2 bioreactors per condition). Cell 

counts were performed daily as well as titer analysis on days 5 and 6 with the data fed back into 

the BO algorithm to generate experimental designs. 

An initial set of 5 media options was selected to serve as seed data for the BO algorithm. 

The design space of this initial dataset was selected to span from half, base and double (0.5X, 

1X, 2X) the base concentration of Phe and Gln in the media. The CO2 level was set to either 5% 

or 8%. An AMBR run of 10 bioreactors (5 conditions duplicated) was run in parallel (Table 1) 

with these initial media conditions. Day 5 was found to be the peak cell density measurement 

for the culture before cell death and proteolytic activity degraded the product. Cultures were 

terminated after cell viability dropped below 65%. 

This initial seed data was then used to set up the next round of experiments using BO 

(see Figure 5). The media and CO2 concentrations, along with the measured titers were used to 

condition the GP model and generate mean predictions and uncertainties. For the next round 

of experiments, a set of 6 media options (12 reactors) was selected with the goal of maximizing 

titer. A separate set of 6 media options were chosen to optimize peak VCD, another bioprocess 

objective often used as a proxy for final titer. To accomplish this goal, a separate GP model was 

conditioned based on peak VCD from the previous 5 seed experimental data sets. The 12 media 

alternatives (6 for titer 6 for VCD) were generated by using the MSMR methodology with a 

range of length values ranging from 10-6 to 102. This selected range was smaller than the in-

silico tested values (10-6 to 106) since our simulations above ascertained that lower values were 

likely to be most effective. However, we selected a less restrictive range than the best 
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performing quadrant Q3 (10-6 to 100, Figure 3B) determined above, as it was expected that the 

laboratory experimental system will not be reflected identically by the simulation system. Of 

the 12 BO-designed experiments, 6 of them were generated by conditioning the GP on the 

training data with titer as the output. The 6 candidates represent 6 media designs to maximize 

titer. The remaining 6 experiments were generated by conditioning a separate GP model on the 

peak VCD of the cultures. This was still done with the ultimate final goal of maximizing titer, and 

to make use of the viability data collected in the initial 5 seed experiments. These two sets of 

BO 6 media design experiments with biological duplicates were then initiated using the AMBR 

system.  

In addition to titer and viability, pH and osmolarity measurements were collected for 

the AMBR runs as shown in  Supplementary Figure 6 and 7. The pH exhibited consistent 

patterns across all media conditions and osmolarity falls in the optimal range to support robust 

cell growth and productivity. In particular, pH initially declined through Day 3 and rose 

thereafter in all conditions, reflecting an intrinsic link between nutrient composition and 

cellular metabolic behavior. Osmolarity measurements ranged between 284 and 307 mOsm/kg 

across all tested formulations, which lies within the physiologically optimal range for CHO cells 

in batch culture. These findings suggest that the effects of pH were implicitly captured by the 

algorithm through their coupling to nutrient inputs and cellular responses. Moreover, all 

cultures were adjusted to a constant volume of 15 mL, minimizing confounding effects from 

volume-dependent osmolarity changes. 

As a comparison to this BO approach, another experimental design approach was run in 

parallel. Space-filling was selected as a flexible approach that can take a dataset of arbitrary size 

and recommend a user-specified number of experiments. The experimental design software 

JMP, was used to generate 12 media designs40. The final experimental design consisted of 12 

BO-designed media alternatives and 12 media options using space filling experimental design, 

as described in Table 1 with the overall experimental plan depicted in Figure 5. All media 

options were conducted as biological replicates, resulting in a total of 48 AMBR mini-bioreactor 

runs.   

The results of this round of experiments are shown in Figure 6. Importantly, the selected 

formulations show clear differences between the BO and space filling designs. As shown in 

Figure 6A, the space-filling approach selected a broader range of formulations than the BO. In 

fact, the range of formulations selected by the BO was relatively restricted compared to that of 

the space-filling design. Directional dispersion analysis was conducted for BO and space filling 

approaches as shown in Figure 741. The variance ellipse in Figure 7A indicated a tighter spread 

along the Phenylalanine axis for the BO approach, reflecting a tendency towards lower 

phenylalanine values with shifted center. In contrast, figure 7B displayed a more centered 
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distribution and a wide spread along both axes for the space filling approach, suggesting 

broader coverage of the solution space. However, the connection plots in figure 7C and 7D 

revealed that the total distances from the optimal center points were nearly identical, 

indicating that both approaches provided similar coverage of the solution space. Despite the BO 

approach showing a bias towards specific media formulation compositions, particularly favoring 

the lower left quadrant of the design space, both datasets demonstrated comparable diversity. 

Importantly, the BO approach was still able to identify three higher-performing media 

formulations in this batch experiment, as illustrated in Figure 6B.The highest producing space 

filling experiment was still approximately 50% percent of these 3 high performing subsets of 

media. Low glutamine concentrations and moderate levels of phenylalanine, depending on the 

CO2 level, tended to produce higher titers in our CHO cells when using the BO algorithm, having 

learned from the first 5 initial seed data. As a result, the BO was able to examine and design 

media that are in the ‘high producer’ region of the design space, illustrating the principal 

advantage of BO. Interestingly, the BO algorithm selected more low-glutamine and 

phenylalanine formulations, as indicated by the cluster of points in the lower left quadrant of 

7A, and the left downward-shift of the centerpoint in 7C. These nutrient conditions were 

indeed favored by high producing processes in past studies15,30,42. In contrast, the space filling 

experimental designs did not learn from the results of previous experiments but rather selected 

designs from an unsampled design space. Furthermore, the poorly performing media 

formulations from the BO could also be applied in future optimization scenarios in which BO-

designed formulations avoid this low titer design space. Overall, this comparison has 

demonstrated that with the same amount of initial data and resources, a  BO algorithm based 

on simulations to identify parameters, together with preliminary experimental test cases was 

able to select enhanced media formulation targets superior to those obtained using 

conventional space filling  approaches. 

4. Discussion: 

This study highlights the effectiveness of uncertainty-based machine learning models in 

optimizing bioprocess experiments. By leveraging in-silico mechanistic modeling, we 

demonstrated the feasibility and effectiveness of Bayesian Optimization (BO) for designing 

media tailored to generate high-titer mammalian cell cultures. We refined BO to address 

specific needs in effective bioprocess optimization, investigating the impact of hyperparameters 

such as ‘explore-exploit κ’ and ‘smoothness,’ while elucidating optimal parameters for media 

design. 

Additionally, we implemented a multi-recommendation algorithm to facilitate parallel 

experimental recommendations, crucial for the inherently time-consuming nature of cell 

culture experiments. Our experimental validation with automated bioreactors confirmed that 
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BO outperforms traditional space-filling frameworks, achieving superior media designs with an 

equivalent number of experiments. Furthermore, incorporating thermodynamics-based 

constraints addressed feasibility issues related to media precipitation. 

Given the growing demand for biopharmaceuticals in rapidly compressed time frames for 

both competitive advantage and addressing emergency deployment requirements such as for 

Covid-19 or future pandemics, efficient and rapid biomanufacturing design development, 

optimization, and implementation are paramount. Data-driven, machine learning-guided 

approaches, like the one developed here, enhance the speed and efficiency of 

biomanufacturing development by effectively utilizing and building upon existing data sets. 

These methods, especially when integrated with physics-based knowledge bases, such as the 

thermodynamics algorithm and kinetic models employed in this study, offer significant 

opportunities for enhancing the potential for bioproduction capabilities across a range of 

organisms over significantly shorter development timelines. 

This framework can also be extended to more complex bioprocess modes such as fed-

batch and perfusion cultures. In these systems, additional process variables—including pH, 

dissolved oxygen (DO), temperature, feed volume, and feed timing—play a critical role and can 

be incorporated into the optimization model. However, the response titer and growth in such 

dynamic systems can be more nuanced. For example, a lower nutrient input might result in a 

higher titer trajectory early in the process but lead to earlier cell decline, ultimately yielding a 

similar final titer compared to other strategies. These trade-offs introduce complexity in 

defining and optimizing objective functions, emphasizing the importance of carefully 

engineered surrogate models and decision criteria. Nonetheless, the adaptability of Bayesian 

Optimization and its ability to incorporate complex inputs make it a promising tool for tackling 

the challenges of fed-batch and perfusion bioprocess optimization. 

In turn, this approach can be used synergistically with automation-based approaches that 

enable high throughput testing to evaluate the validity of these predictive capabilities. This 

combination of machine-learning based advanced experimental design combined with 

automation approaches paves the way for an exciting future in automated laboratories with ML 

based optimization techniques, driving innovation in media formulation and other applications 

for improving bioprocess efficiencies for next generation biotherapeutics and bioproducts 

manufacturing. 
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Data availability: Raw cell growth curves and corresponding titer measurements generated 

during media optimization experiments are provided in Supplementary Data table S1. 

Code availability: We have uploaded to github with accessibility available upon request. The 

algorithm was developed under an active Industry/University partnership. As suggested in the 

cell press’ author guide, we will grant access to interested researchers upon request and 

approval.  

Any additional information required to reanalyze the data reported in this article is available 

from the lead contact upon request. 

Materials availability: This study did not generate new unique reagents. 

Limitation of Study 

The experimental validation involved a batch culture format and a restricted number of amino 

acids (phenylalanine and glutamine), which may not fully capture the complexity of fed-batch 

or perfusion processes common in industrial settings. Second, the surrogate Gaussian Process 

models rely on relatively small training datasets, which may limit its extrapolation to new 

process variables or cell lines. Future work will expand to different processing platforms and 

include larger datasets and more cell lines to validate broader scope and applicability. 
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Main Figure Titles and Legends 

Graphical Abstract: Model-Guided Thermodynamics-Aware Bayesian Optimization of Cell 

Culture Medium in Bioprocess 

Figure 1. Explore and Exploit tradeoff on Bayesian Optimization(BO) campaign in-silico. Moving 

from left to right (A-D), there is an increasingly explorative BO (higher k) algorithm. The 

different BO media composition (Glucose (blue), Asparagine(orange), and Lactate(green)) 

designs are plotted over each iteration in the 20 sequential experiments, campaign. (E-H)The 

titer measured after each iteration is also plotted (purple).  Despite consistently finding high 

titer designs, the Kappa=0.1 campaign shows very conservative behavior, spending all the time 

on extremely similar media compositions. Kappa=1 and 3 are more explorative and while they 

uncover low titer formulations, they also achieve higher titers than k=0.1 during their 

campaigns. The Kappa=10 produce very exploratory behavior, appearing erratic with no 

improvement in titer over time. 

Figure 2. Titer of the BO campaigns vs Space-fill. The violin plot shows the titers from all the 20 

experiment BO campaigns and the space-fill design, which consists of uniformly sampling the design 

space. The means are shown by the white line, and low kappas (exploitative) have average titers for 

their campaigns including the highest performing formulations in the k=1 campaign. The space-fill has 

the lowest average titer and a wide spread of titers shown by the narrow width of the violin plot. 

Figure 3. Multi-recommendation in-silico BO campaigns: The Multi Scale Multi Recommendation 

(MSMR) algorithm was used to generate multiple BO recommendations with an exploitative kappa 

value. A. A 40 experiment BO campaign was initiated with 4 recommendations per each BO iteration. 

The alpha values selected by the MSMR were recorded and plotted with run number. The spread of the 

points shows that the set of alpha values selected during the campaign was diverse. B. The performance 

of each experiment (and associated alpha value) was also recorded and plotted. The plot is further 

divided into 4 quadrants reflecting combinations of alpha and titer values. Strikingly, half of the high 

titer recommendations (set to above 4), were of alphas of high value. Conversely, low to moderate titers 

were in the first quadrant. This suggests that ‘low’ alpha values can accurately optimize this in-silico 

bioprocess, implying that the underlying media-titer function is relatively smooth (low alpha). 

Figure 4: Impact of Thermodynamic constraints on cell culture media experimental design. A&B 

present scenarios that would be missed by assuming normal solubility of amino acids in mixtures. A. 

Example of 2 amino acids that mutually decrease each other’s solubility through intermolecular 

interactions. This means that some mixtures would result in precipitation even though either 

individually would be soluble at that concentration. B. Example of 2 amino acids where the first amino 

acid (GLY) increases the solubility of amino acid 2 (Serine) but not vice versa. As a result, there is a 

region where in the presence of serine is more soluble than expected from it’s solubility alone in water.  
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C. 20 points were sampled uniformly in the experimental space where Phenylalanine and Glutamine are 

modified in medium. The upper bounds of the samples were the solubility of each amino acids (blue 

box). The UNIFAC model is used to calculate whether precipitation occurs in the mixtures. Green 

indicates a soluble mixture while purple indicates precipitation. Of the sampled points 5/20 experiments 

are outside of feasibility. D. 20 points were sampled uniformly similarly for Glutamine and Alanine. 

Again, the upper bounds of the samples were the solubility of each amino acids (blue box). All samples 

formulations are feasible but ~13% of the feasible space is ignored by the not taking into account the 

thermodynamic-based nutrient concentration upper bounds. 

Figure 5. Experimental setup for Bayesian and space-filling media optimization. The experiment began 

with media lacking glutamine and phenylalanine. After thawing, cells were cultured in basal media for 

two passages before being transferred to the AMBR15 automated culture system under varying levels of 

glutamine, phenylalanine, and CO2. Initial conditions (Run 1) were designed to include half, base, and 

double (0.5X, 1X, 2X) the base concentrations of glutamine and phenylalanine, with CO2 levels set to 5% 

or 8%. Measured titer and growth data were used to initialize the Bayesian Optimization algorithm. 

Simultaneously, a classical space-filling design was performed to enhance solution space coverage and 

construct a surface response curve. Each method generated 12 experimental designs to evaluate and 

compare their effectiveness. 

Figure 6: Experimental comparison of performance of BO and Space-fill designs. A. Only showing the 

Glutamax and Phenylalanine concentrations, the selected formulations from the Space-filling 

experiment was uniformly spread, as expected. On the other hand, the BO experiments show a bias for 

the lower left quadrant, which are likely areas of high expected titer. Additionally , the BO experiments 

also showed some exploration of the space. B. The BO experiments and the Space-filling experiments 

were run during two different AMBR runs and so running controls (green*) was necessary to ensure 

data is reliable and reproducible. The titers obtained from the follow on experiments shows that the BO 

algorithm was able to obtain the highest titer formulations. The BO also identified low performing 

formulations (some even worse than the space-filling designs). These experiments show that with a 

similar dataset the BO was able to achieve higher titers with the same number of experiments. Data are 

represented as mean. 

Figure 7. Directional dispersion and coverage analysis of BO and Space-Filling approaches. (A) Variance 

ellipse for BO shows a tiger spread along the Phenylalanine axis with shifted center toward lower left 

quadrant, indicating a sampling bias. (B) The Space-Filling approach displays a more centered 

distribution with broad spread along both axes. (C) and (D) are connection plots for BO and Space-filling 

methods that visualize the total distances of each sample point from an optimal center to minimize the 

total distance. The result showed that the total distances were near identical for both methods, and 

therefore, a comparable diversity in the solution space, despite BO has a bias toward specific media 

formulations. 

Main Table Titles and Legends 
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Table 1: Table of all  media formulations run on the AMBR, and the corresponding titer and peak VCD. 

The media formulation of all the experiments ran in bioreactors arain the table above. The initial 5 

datapoints denoted as Run 1 shows seed data used to prime the BO and space-filling designs. The BO 

designs generated using the 5 initial datapoints consist of 6 designs maximizing VCD (orange) and 6 

designs maximizing Titer (blue). The Space-fill design that followed the initial run is listed along with 

corresponding titer and VCD. 

 

STAR Methods 

 

Experimental Model and Study Participants Details 

Suspension CHO-K1 VRC01 cells (kindly provided by the National Institute of Health) 

were cultured in Immediate Advantage custom media (Millipore Sigma, Cat 87093C), with 4mM 

GlutaMax (Thermo Fisher, Cat: 35-050–061) in 125 mL flat-bottom shake flasks. Cell number 

was counted using a hemocytometer (Electron Microscopy Sciences) and a light microscope 

(Zeiss) and seeded at a density of 3 × 106 cells/mL. Cells were cultured in an incubator at 37°C, 

5% CO2, 80% humidity. 

 

Method details 

 

Experimental setup and AMBR runs 

The cells, which were adapted to Immediate Advantage custom media (Millipore Sigma), 

with 4mM GlutaMax (Thermo Fisher), were thawed and cultured in 125 mL flat-bottom shake 

flasks. Before transfer into the AMBR automated cell-culture system, cells were cultured in a 

20-30 mL working volume and passaged to 0.3x106 cells/mL every 3-4 days based on counts 

taken using trypan blue exclusion. Cells were inoculated into the AMBR at a minimum of 2 

passages after thawing into shake flasks to ensure appropriate recovery. The CHO-K1 cells were 

inoculated into the AMBR in their new BO-designed (or space-filling-designed) formulation for 

media and reactor adaptation. Once in the AMBR, cells passaged every 3-4 days to 0.3x106 

cells/mL by action of the AMBR’s robotic arm, for at least 3 passages. This ensured that cells 

were fully acclimated to the change of media as well as to the AMBR. This is an important step 

and ensures that product titers measured were not coming from a transient state of cell stress 

associated with a change of environment (and would thus be hard to control and/or 

reproduce). Then, the cell culture experiment is initiated, where cells are allowed to grow until 

cell decline in a batch format (no feeding). During the run, cells are counted every day, 

recording the cell viability (% alive) and viable cell densities (VCD). Supernatants are collected 

for titer measurement on days 5 and 6 (typical peak titer before cell density decline). 
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Growth and Viability measurements 

Cell culture samples were collected every 24 hours during the cell culture process to 

measure cell density and viability. Cells were stained and diluted with a 0.2% trypan blue 

solution (Gibco). Viable cell density (VCD, E6 cells/mL), which was used to assess cell growth, 

was measured with a hemocytometer (Electron Microscopy Sciences) and a light microscope 

(Zeiss). Cell culture viability was monitored using the trypan blue dye exclusion method. Both 

growth and viability were monitored daily. 

HPLC titer measurements 

An IgG standard curve was constructed with reagent grade IgG from human serum 

(Millipore Sigma, Cat: I2511). IgG samples at 5 g/L, 2 g/L, 1 g/L, 0.5 g/L, and 0.2 g/L were 

prepared by performing serial dilution with HPLC grade water.  

The binding buffer consists of 1.9 g sodium phosphate monobasic monohydrate, 9.8 g 

sodium phosphate diabasic heptahydrate, and 5.84 g sodium chloride per liter of HPLC grade 

water. The elution buffer consists of 6.8 g sodium phosphate monobasic monohydrate and 5.84 

g sodium chloride per liter HPLC grade water with pH adjusted to 2.7 using phosphoric acid. 

Cell culture samples were collected on days 5 and 6 of the cell culture and centrifuged at 

2000 × g. Supernatants were collected for titer quantification.  

Titer quantification was performed via an agilent HPLC system (Agilent, Infinity 1200) 

using a protein A column (Poros 2 µm, 2.1 × 30 mm; Thermofisher). Samples were injected in 

the column in two technical replicates. Blank samples were run between every sample. Agilent 

Chemstation was used for data interpretation. 

DOE experimental design by JMP 

JMP Version 17.2.0 under a Johns Hopkins University student license was used to 

suggest experiments based on experimental data. The widely used Space-Filling Designs mode 

was employed to generate experimental setups to try in the AMBR. 

Bayesian Optimization experimental design 

All Bayesian optimizations were performed using BayesOpt and Scikit-learn libraries in 

Python. Gaussian process regression with the Matern kernel implemented in BayesOpt and 

SciKit Learn was used to explore different kernels and acquisition functions. The Matern kernel 

with default parameters robustly reproduced the cell culture data as suggested by other 

publications in the space. Either simulation data from the hybrid model or experimental data 
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from the lab was used to model the effect of cell medium components on titer and suggest new 

experiments using this implementation of Gaussian Processes and Bayesian Optimization. 

Quantification and statistical analysis 

Growth and viability measurements were recorded in Microsoft Excel. For each 

condition (n = 2 biological replicates), data are reported as mean ± SEM. 

For HPLC titer quantification, Agilent ChemStation software was used for manual signal 

integration. Each condition was run in biological duplicate, and each biological replicate was 

analyzed in technical duplicate. Processed data were interpreted in Microsoft Excel. Titer data 

from different batches were normalized to the control condition (cells cultured in Immediate 

Advantage custom media with 4 mM GlutaMax). 
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 CO2(%) 

Phenylalanine 

(mM) 

Glutamine 

(mM) 

Peak VCD 

(106 cells/mL) 

Titer (Day 5) 

(g/L) 

 5.00 0.77 6.00 13.5 1.36 

 8.00 1.56 3.00 15.6 1.39 

Run 1 5.00 3.08 3.00 15.0 1.60 

 8.00 1.56 12.0 9.80 0.816 

 8.00 1.56 6.00 11.9 0.763 

 

 CO2(%) 

Phenylalanine 

(mM) 

Glutamine 

(mM) 

Peak VCD 

(106 cells/mL) 

Titer (Day 5) 

(g/L) 

   VCD Objective   

 8.00 6.14 11.10 12.60 1.09 

 8.00 0.11 6.92 0.26 0.12 

 8.00 1.01 2.16 9.74 2.55 

 5.00 8.46 2.49 11.23 2.80 

 8.00 6.46 15.16 12.33 1.05 

 5.00 2.26 18.18 10.13 1.23 

Run 2 (Bayes)   Titer Objective   

 8.00 0.28 19.90 5.90 0.52 

 5.00 1.36 0.50 7.16 2.47 

 5.00 0.30 7.00 3.29 0.80 

 8.00 0.55 5.96 11.50 1.36 

 5.00 0.10 10.80 0.11 0.13 

 8.00 0.52 19.90 9.18 0.76 

 

 CO2(%) 

Phenylalanine 

(mM) 

Glutamine 

(mM) 

Peak VCD 

(106 cells/mL) 

Titer (Day 5) 

(g/L) 

 8.00 3.38 19.97 8.62 0.78 

 8.00 9.99 18.38 7.14 0.82 

 8.00 0.55 5.96 6.42 1.45 

 8.00 8.57 15.27 8.83 0.73 

 8.00 0.16 0.32 1.26 0.60 

Run 2 8.00 7.17 8.33 9.90 1.04 

(Space-fill) 5.00 4.28 10.51 7.82 1.31 

 5.00 5.83 1.45 6.30 1.37 

 5.00 9.52 5.25 - - 

 5.00 1.56 6.00 10.02 1.37 

 5.00 6.34 13.09 7.49 0.96 

 5.00 2.12 17.10 8.83 0.90 

 5.00 2.12 17.10 10.62 1.23 
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Highlights: 

● Integrated Bayesian optimization (BO) with thermodynamic constraints for CHO media design 

● In-silico fine-tuning and validation of BO algorithm with metabolic hybrid model 

● Thermodynamics-awareness avoids amino acid precipitation, ensuring feasible formulations 

● Experimental validation with batched-BO in AMBR bioreactors yields higher titers than DOE 
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KEY RESOURCES TABLE 
 

REAGENT or RESOURCE SOURCE IDENTIFIER 

Biological samples   

   

   

   

   

   

Chemicals, peptides, and recombinant proteins 

Immediate Advantage custom media Millipore Sigma Cat#87093C 

GlutaMAX 
Gibco (Thermo Fisher 
Scientific) 

Cat#35050061 

Trypan Blue 0.2%` 
Gibco (Thermo Fisher 
Scientific) 

Cat#15250061 

L-Phenylalanine Millipore Sigma Cat#5202 

Critical commercial assays 

Poros Protein A Column (2 µm, 2.1 × 30 mm) 
Thermo Fisher 
Scientific 

Cat#1130202E 

   

   

   

   

Deposited data 

Code in a private github repository jma73@jh.edu Access upon request 

   

   

   

   

Experimental models: Cell lines 

CHO-K1 cell line National Institute of 
Health (NIH) 

CRL-9618 

   

   

   

   

Experimental models: Organisms/strains 
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Oligonucleotides 

   

   

   

   

   

Recombinant DNA 

   

   

   

   

   

Software and algorithms 

JMP Pro 17 JMP (SAS Institute) 
https://www.jmp.co
m 

Scikit-Learn 
(Pedregosa et al., 
2011) 

https://scikit-
learn.org 

BayesOpt 
(Fernando Nogueira, 
2014) 

https://github.com/f
mfn/BayesianOptimi
zation 

Python 3.8 Python Software 
Foundation 

https://python.org 

MATLAB (R2022b) The MathWorks, Inc https://www.mathwor
ks.com/ 

Other 

Countess Hemacytometer life technologies 19350 

Countess 3 Invitrogen AMQAX2000 

Infinity 1260 Vialsampler Agilent Technologies G7129A 

Infinity 1260 Quat Pump Agilent Technologies G1311B 

Infinity 1260 TCC Agilent Technologies G1316A 

Infinity 1260 DAD Agilent Technologies G4212B 

Infinity 1260 FLD Agilent Technologies G1321B 
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