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Abstract

The rapidly expanding market for regenerative medicines and cell therapies

highlights the need to advance the understanding of cellular metabolisms and

improve the prediction of cultivation production process for human induced

pluripotent stem cells (iPSCs). In this paper, a metabolic kinetic model was

developed to characterize the underlying mechanisms of iPSC culture process,

which can predict cell response to environmental perturbation and support process

control. This model focuses on the central carbon metabolic network, including

glycolysis, pentose phosphate pathway, tricarboxylic acid cycle, and amino acid

metabolism, which plays a crucial role to support iPSC proliferation. Heterogeneous

measures of extracellular metabolites and multiple isotopic tracers collected under

multiple conditions were used to learn metabolic regulatory mechanisms. Systematic

cross‐validation confirmed the model's performance in terms of providing reliable

predictions on cellular metabolism and culture process dynamics under various

culture conditions. Thus, the developed mechanistic kinetic model can support

process control strategies to strategically select optimal cell culture conditions at

different times, ensure cell product functionality, and facilitate large‐scale

manufacturing of regenerative medicines and cell therapies.

K E YWORD S

cell therapy manufacturing, induced pluripotent stem cells (iPSCs), metabolic regulatory
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1 | INTRODUCTION

Cell therapeutics and regenerative medicines have the potential to

treat and prevent diseases, such as cancers, and cardiovascular and

hematologic diseases (Hanna et al., 2016; Stephanopoulos

et al., 1998). The cell therapy market is experiencing unparalleled

growth and the projected worth of the relevant market is expected to

be over $8 billion in 2025 (Fiorenza et al., 2020). To meet the rising

demand, cost reductions in manufacturing and increases in quality for

human induced pluripotent stem cells (iPSCs) on a large scale are

crucial for the success of cell therapies (Odenwelder et al., 2021).

Unlike traditional biopharmaceuticals, the cells are the product with

functional identity depending on the regulatory metabolic dynamic

behaviors.

The efficacy of the cells is very sensitive to culture conditions.

Variability in the culture conditions can lead to reduced yields and

heterogeneous cell populations. Heterogeneous cell populations

have been observed to increase the potential for tumor or teratoma
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formulation in the patient (Dressel, 2011). Traditional cell culture

process control strategies often are ad hoc and rely solely on

experimental approaches or PID controllers ignoring long‐term

effects. The optimal design and control of mammalian cell culture

processes, especially iPSCs, can be laborious due to the limited

understanding of cellular metabolisms and end‐to‐end cultivation

process dynamics (Kyriakopoulos et al., 2018; Wang et al., 2021).

To determine the best culture conditions, accounting for cell life

cycle, relationships between culture conditions and the output

trajectory (i.e., cell functional identity and yield) are needed.

Mechanistic dynamics model has the capability to predict cell

outcomes (e.g., metabolic flux rates) and can be used to assess

product quality and strategically select the optimal culture conditions

at different times.

The proposed mechanistic model describes an iPSC metabolic

network regulatory mechanisms. It is associated with the existing studies,

including (1) metabolic flux analysis (MFA) (Niklas & Heinzle, 2012; Nolan

& Lee, 2011), (2) 13C‐MFA (Antoniewicz, 2015, 2018; Dong et al., 2019;

Leighty & Antoniewicz, 2011; Quek et al., 2010; Rivera‐Ordaz et al., 2021;

Sengupta et al., 2011; Wiechert et al., 2001), and (3) kinetic models

(Ghorbaniaghdam et al., 2014, 2013, 2014; Kyriakopoulos et al., 2018;

Nolan & Lee, 2011). In MFA, metabolic flux rates (such as substrate

uptake rate and metabolite secretion rate) are estimated based on

experimental measurements subject to stoichiometric constraints. Under

the standard assumption of (pseudo) steady state for intracellular

metabolites, the sum of all fluxes producing a metabolite is equal to the

sum of all fluxes consuming that metabolite. This technique is frequently

used to compare the metabolism of different cell lines to assess the

activity of individual pathways under different cultivation conditions

(Niklas & Heinzle, 2012). However, intracellular metabolites can change

during cell proliferation (Templeton et al., 2013).

Stable isotope studies, integrating with MFA, have provided

more detailed information on intracellular state and metabolic

pathways, namely 13C‐MFA can precisely estimate metabolic

reaction rates. Typically these flux rates are estimated from measured

intracellular mass isotopomer distribution (MID) patterns and

external metabolites concentrations. Common 13C and 2H isotopic

tracers were utilized for investigating mammalian cell metabolism

with a specific emphasis on the interpretation of isotopic labeling

patterns (Dong et al., 2019). Many existing studies are built on the

assumption of isotopic and metabolic steady state

(Antoniewicz, 2015, 2018; Dong et al., 2019; Quek et al., 2010;

Rivera‐Ordaz et al., 2021; Sengupta et al., 2011; Wiechert

et al., 2001). Several modeling tools have been developed for

situations involving isotopic and/or metabolic non‐steady states

(Antoniewicz, 2015, 2018; Leighty & Antoniewicz, 2011).

Another approach to model cell dynamics includes kinetic‐

metabolic models (Kyriakopoulos et al., 2018). The vast majority of

the kinetic models use Monod and Michaelis–Menten (MM) expres-

sion formalisms modeling the metabolic regulation mechanisms

(Ghorbaniaghdam et al., 2014, 2013, 2014; Kyriakopoulos et al., 2018;

Nolan & Lee, 2011). For Chinese hamster ovary (CHO) cell cultures,

kinetic‐metabolic models include glycolysis, pentose phosphate

pathway (PPP), tricarboxylic acid (TCA) cycle, respiratory chain, as

well as the regulatory functions from energy shuttles (ATP/ADP) and

cofactors (NADH, NAD +, NADPH, NADP +); this high level of details

is required to predict hypoxic perturbation (Ghorbaniaghdam

et al., 2013, 2014). For example, the study (Nolan & Lee, 2011)

proposed a Monod model characterizing the cell flux rate response to

environmental perturbation. That study used limiting substrate

kinetics to calculate the extracellular metabolite consumption/

production rates and further infer metabolic flux rates built on a

static MFA assumption, that is, assuming the intracellular metabolites

are at the pseudo‐steady state. Even though several in silico

metabolomic platforms have been developed for CHO cells

(Ghorbaniaghdam et al., 2014, 2013, 2014; Kyriakopoulos et al., 2018;

Nolan & Lee, 2011), a metabolic regulatory network simulator for

iPSC has not been developed.

As lactate accumulation emerges as an inevitable outcome of iPSC

metabolism, it becomes essential to explore the consequences of

accumulated extracellular lactate on intracellular iPSC metabolism.

Equally important is to comprehend how glucose concentration acts as

a regulatory factor, influencing lactate production. Understanding the

implications of these concentration variations is not only critical for the

survival and proliferation of iPSCs (Nelson et al., 2008) but also

essential for maintaining the quality of cell products. Hence, the main

objective of this study is to develop and validate a mechanistic model

of an iPSC metabolic regulatory network that can precisely predict cell

responses to environmental changes, with a particular focus on

variations in extracellular glucose and lactate concentrations.

The proposed model primarily focuses on central metabolism,

given its pivotal role in stem cell proliferation, biosynthesis, and

overall functionality. To estimate model parameters, this model

utilized experimentally obtained data from well‐designed mono-

layer K3 iPSC cultures, as described in the study (Odenwelder

et al., 2021). During the model development, the level of detail

required for key pathways was explored, namely the PPP and

branched amino acids uptake rates into the TCA cycle. In this

paper, the proposed kinetic model structure with critical regulatory

mechanisms will be discussed and validated through comparisons

with the experimental data, with the aim of ensuring the model's

ability to accurately predict cell responses to environmental

changes.

The proposed mechanistic model, comprising the metabolic

reaction network structure and flux regulatory mechanism, can be

easily customized to suit various mammalian cell culture systems, for

example, embryonic stem cells (ESCs), CHO, etc. This adaptability

arises from the underlying principles and general characteristics of

metabolic regulation that are common across various mammalian

cells. Through the collection of extracellular metabolite concentra-

tions and intracellular MID measurements, this mechanistic model

can be adeptly employed to analyze and forecast the behavior of

other mammalian cell cultures with consistent accuracy and

reliability.
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2 | DATA DESCRIPTION

Briefly, the data used to estimate the model parameters were derived

from an experimental study of K3 iPSCs, where monolayer cultures

were conducted in 6‐well plates and 60 mm cell culture dishes

(Odenwelder et al., 2021). The data encompassed extracellular

metabolite measurements and isotopic labeling details for four

distinct culture conditions, utilizing three tracers: glucose, glutamine,

and lactate. The four different initial culture media concentrations

were: (1) high glucose and low lactate (HGLL); standard initial

conditions, that is, 18.3 mM glucose and 0 mM lactate; (2) high

glucose and high lactate (HGHL), that is, 18.3 mM glucose and 20 mM

lactate; (3) low glucose and low lactate (LGLL), that is, 5.6 mM

glucose and 0 mM lactate; and (4) low glucose and high lactate

(LGHL), that is, 5.6 mM glucose and 20 mM lactate. Table 1 presents

the media concentrations used for each condition, encompassing

glucose, lactate, and supplemented sodium chloride concentrations.

Furthermore, 2.75 mM glutamine was included in each condition.

These concentrations were chosen to ensure comparable growth

rates across all conditions while maintaining pluripotency

(Odenwelder et al., 2021).

Cell density, glucose, lactate, pyruvate, and extracellular amino

acid concentrations were obtained for each condition at 0‐, 12‐, 24‐,

36‐, and 48‐h. Intracellular amino acid MIDs were obtained from

parallel labeling experiments that used [1,2‐ C13
2] glucose, [U‐ C13

5]

L‐glutamine, and [U‐ C13
3] sodium L‐lactate (when lactate was added

to the culture media). The time‐course measurements, as illustrated

in Figure 1, included the transition to metabolic and isotopic steady

states (Odenwelder et al., 2021). These measurements were used to

develop the metabolic regulatory network kinetic model for iPSC

cultures.

3 | MODEL DEVELOPMENT

iPSCs cultured in petri‐dish 2D monolayer have homogeneous

environmental condition. Thus, the objective of this study is to

develop a deterministic metabolic regulatory network kinetic model

characterizing the mean metabolic dynamics, which is presented in

four developmental stages. Section 3.1 provides the general dynamic

model description, including (1) metabolic reaction network kinetic

model; and (2) time‐course isotopic labeling simulation. Section 3.2

presents the iPSC metabolic reaction network which includes central

carbon metabolism. In Section 3.3, the metabolic flux kinetic model,

characterizing cell response to environmental variations, is fitted by

using time‐course extracellular concentration measurements and

MIDs. Finally, in Section 3.4, the assessment of fit and validation of

the dynamic model for the iPSC cultures is discussed, where the

objective function and goodness‐of‐fit will be presented.

3.1 | Metabolic network kinetic modeling

In this section, the general regulatory metabolic network kinetic

model and time‐course isotopic labeling simulation are presented.

The kinetic model captures the dynamic changes in cell density, and

extracellular and intracellular metabolite concentrations, where the

changing rates of metabolites depend on the concentration of

substrates and inhibitors. To incorporate the mass isotopic data, a

dynamic isotopic labeling system was constructed, and a time‐course

isotopic labeling simulation was developed. Overall, the metabolic

reaction network kinetic model provides a comprehensive under-

standing of the underlying mechanisms of the iPSC cultures.

(1) Metabolic Reaction Network Kinetic Model. The data from

the study for K3 iPSCs were collected during the exponential growth

phase (Odenwelder et al., 2021). Through experimental design and

statistical analysis, our previous study (Odenwelder et al., 2021)

discovered uniform specific cell growth rates (μ) across the four batch

culture conditions (HGLL, HGHL, LGLL, and LGHL), maintaining

pluripotency. This suggests that glucose and lactate concentrations

within these ranges did not notably influence K3 iPSC growth rates

and did not have a detrimental impact on human K3 iPSC

pluripotency. Thus the classical cell density formalism was used to

TABLE 1 The media formulations for K3 iPSC cultures include
initial concentrations of glucose, sodium L‐lactate, and supplemented
sodium chloride (NaCl).

Component
Concentrations (mM)
HGLL HGHL LGLL LGHL

Glucose 18.3 18.3 5.6 5.6

Lactate – 20.0 – 20.0

Added NaCl +20.0 – +20.0 –

Note: NaCl was added to balance osmolarity in cultures lacking sodium
lactate. Additionally, the media contains 2.75 mM l‐glutamine.

Abbreviations: HGHL, high glucose and high lactate; HGLL, high glucose
and low lactate; LGHL, low glucose and high lactate; LGLL, low glucose
and low lactate.

F IGURE 1 Schematic for cell metabolic and isotopic states when
time‐course measurements of extracellular concentrations and
intracellular MIDs were taken during the experimental iPSC cultures
(Adapted from Jazmin and Young (Jazmin & Young, 2013) and
created with BioRender.com). Metabolic steady state is reached
before isotopic steady state (Odenwelder et al., 2021). iPSC, induced
pluripotent stem cells; MID, mass isotopomer distribution.
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relate growth and the cell density, denoted by X t( ) (cells/cm2), at time

t as,

dX t

dt
μX t

( )
= ( ). (1)

The extracellular metabolite concentrations at time t are denoted

by a vector with dimension p, that is, s t s t s t s t( ) = ( ( ), ( ), …, ( ))p1 2
⊤.

Similarly, the intracellular metabolite concentrations of interest are

denoted by a vector with dimension q at time t as

t t t t( ) = ( ( ), ( ), …, ( ))q1 2
⊤ . Thus, at any time t, the state of extra-

cellular and intracellular metabolite concentrations is denoted by

u st t t( ) = ( ( ) , ( ) ) .⊤ ⊤ ⊤

To model the dynamic evolution of cell response to environ-

mental fluctuations during the iPSC cultures, at any time t, the

specific reaction flux rates, represented by a vector with dimension n,

depend on both extracellular and intracellular metabolite concentra-

tions, that is,

v u u u ut v t v t v t[ ( )] = ( [ ( )], [ ( )], …, [ ( )]) .n1 2
⊤

Let N denote a p q n( + ) × stoichiometry matrix characterizing

the structure of metabolic reaction network. Therefore, the dynamic

evolution of extracellular and intracellular metabolite concentrations

is modeled through a mass balance on the system of equations,

u
v u

d t

dt
N t X t

( )
= [ ( )] ( ). (2)

To capture the cell response to environmental perturbation, a

MM formalism based regulation model was used to characterize the

relationship of metabolic flux rates depending on the concentrations

of associated substrates and inhibitors. This allows leveraging the

existing biology knowledge and facilitating the learning of regulation

mechanisms of iPSC metabolic reaction network from the experi-

mental data.

Specifically, the g‐th flux rate at the time t is modeled as,

∏ ∏uv t v
u t

u t K

K

u t K
[ ( )] =

( )

( ) + ( ) +
,g max g

y

y

y m y z

i z

z i z
,

Ω , Ω

,

,
Y
g

Z
g

∈ ∈

(3)

for g n= 1, 2, …, , where the set ΩY
g represents the collection of

activators (such as nutrients and substrates) influencing the flux rate

vg and the setΩZ
g represents the collection of inhibitors dampening vg.

The parameters Ki,⋅, Km,⋅, and vmax,⋅ represent the affinity constant, the

inhibition constant, and the maximum specific flux rate respectively.

For iPSC cultures, the experimental data referenced were used to

identify the critical activators and inhibitors, as well as learning the

MM regulation model coefficients.

(2) Time‐Course Isotopic Labeling Simulation. Different
13C‐labeling patterns are generated by different flux distribu-

tions v u t[ ( )]. Thus, incorporating the dynamic system of isotopic

labeling patterns (MID), which is a vector containing the

fractional abundance of each mass state of metabolites, into the

metabolic network kinetic model can aid in understanding

intercellular metabolic network mechanisms. However, modeling

each individual atom as one system state variable is computa-

tionally expensive. To address this issue, the elementary

metabolite unit (EMU) framework was proposed, and it is based

on a highly efficient decomposition method that can identify the

minimum amount of information needed to simulate isotopic

labeling (Antoniewicz et al., 2007). Basically, the EMUs are

created by using a decomposition algorithm and form the new

basis for generating system equations that describe the relation-

ship between fluxes and isotope measurements; see more

detailed information in studies (Ahn & Antoniewicz, 2011, 2013;

Antoniewicz, 2015, 2018, 2021; Antoniewicz et al., 2007; Jazmin

& Young, 2013).

Based on the study (Antoniewicz et al., 2007; Young et al., 2008),

the reduced system can be obtained after decoupling based on EMUs

with size r R= 1, 2, …, and connectivity. The time‐dependent net-

work was first identified: the decoupled EMUs with size r network,

G t V E W t( ) = { , , ( )}r r r r with r R= 1, 2, …, . The vector ( )V V V= ,r r
a

r
b( ) ( )⊤ ⊤ ⊤

is

the set of vertices (i.e., EMUs) within the r‐th network, the vector Vr
b( )

with dimension Vr
b( )  is the set of input EMUs (i.e., EMUs with size

smaller than r or EMUs of extracellular carbon sources), the vector

Vr
a( ) with dimension Vr

a( )  is the set of EMUs with size r . Er is the

adjacency matrix with dimension ( ) ( )V V V V+ × +r
a

r
b

r
a

r
b( ) ( ) ( ) ( )        rep-

resenting the dependence between each vertex. The corresponding

weight matrix W t( )r varies with time t. The non‐negative i j( , )‐th

elementW t( )r
i j( , ) indicates the flux rate of the reaction producing i‐th

EMU by consuming j‐th EMU at time t.

Thus, at any time t, the dynamic isotopic labeling system can be

defined as:

dC t

dt

A t C t B t D t

P t

( )
=

( ) ( ) + ( ) ( )

( )
,

r r r r r

r

⋅ ⋅
(4)

where the rows of the state matrix C t( )r correspond to the MIDs of

EMUs within Vr
a( ) at time t. The input matrix D t( )r is analogous but

with rows of input/carbon sources EMUs within Vr
b( ) at time t. The

concentration matrix P t( )r is a diagonal matrix whose elements are

pool sizes corresponding to EMUs represented in Vr
a( ). The construc-

tion of A t( )r and B t( )r are based on the decoupled EMU reaction

network G t( )r . The system matrix A t( )r with size V V×r
a

r
a( ) ( )    and

matrix B t( )r with size V V×r
a

r
b( ) ( )    describe the metabolic network

with elements defined as follows:

∑
A t

W t i j

W t i j

( ) =
− ( ), = ,

( ), ≠ ;

r
i j

k

V

r
k j

r
i j

( , )
=1

( , )

( , )

r
a( )







 

(5)

and

( )
B t W t( ) = ( ).r

i j
r
i V j

( , )
, +r

a( )  (6)

1338 | WANG ET AL.

 10970290, 2024, 4, D
ow

nloaded from
 https://analyticalsciencejournals.onlinelibrary.w

iley.com
/doi/10.1002/bit.28609, W

iley O
nline L

ibrary on [25/06/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



3.2 | iPSC metabolic reaction network

The developed iPSC metabolic network model leverages central

carbon metabolism from several previously published metabolic

frameworks (Dressel, 2011; Fiorenza et al., 2020; Ghorbaniaghdam

et al., 2013, 2014; Niklas & Heinzle, 2012; Odenwelder et al., 2021)

and further learns from data. The iPSC metabolic network included

glycolysis, TCA cycle, anaplerosis, PPP, and amino acid metabo-

lism. For simplification, the reactions of PPP were collapsed into

two reactions: Oxidative phase/branch and Non‐oxidative phase/

branch (i.e., No. 9 & 10 reaction in Table A1). During the

exponential phase, greater than 90% of pentose‐phosphate

carbons is returned to glycolysis for the mammalian cell

(Halestrap, 2012; Templeton et al., 2013). Thus, the synthesis of

nucleotides and nucleic acids is considered as an insignificant

contributor to the model. The metabolic network is shown in

Figure 2 and the metabolic stoichiometry is listed in Table A1. The

descriptions of metabolites and the enzymes conform to the

Enzyme Commission Number (EC‐No.) and are provided in

Tables A3 and A4, respectively.

While this model primarily focuses on central carbon metabo-

lism, it's worth noting that the additional model's structure,

including metabolic reaction pathways (e.g., one‐carbon metabo-

lism, fatty acid oxidation, and nucleotide biosynthesis) and the

associated flux regulatory mechanisms, could be easily

incorporated.

3.3 | Biokinetic model of flux regulatory
mechanism

Due to the lack of energetic state and redox level measurements,

each metabolic flux rate is modeled as dependent on the substrates

and inhibitors concentrations using MM model formalism. Similar to

the existing studies (Dressel, 2011; Fiorenza et al., 2020;

Ghorbaniaghdam et al., 2014), for simplification purposes and also

due to a lack of available data in the literature, a single affinity

constant value is used for each metabolite. Additionally, reaction

reversibility was considered during the iPSC culture model develop-

ment for some key reactions. The final model is fully described in

Table A2. Several regulatory mechanisms (i.e., No. R1 to R7) are

highlighted in Figure 2, which were incorporated into the metabolic

flux kinetic model to improve the model's prediction capability and

better characterize the responses to environmental variations. These

key final reactions are described below, where these new dependen-

cies are highlighted in under brackets …… with the corresponding

regulatory mechanism No., while the original nomenclature is outside

the brackets.

1. Lactate accumulation has previously been reported to reduce

glycolytic activity by inhibiting hexokinase (HK) and phosphofruc-

tokinase (PFK) activity in mammalian cells, where lactate acts as a

signaling molecule to down‐regulate PFK activity (CostaLeite

et al., 2007; Ivarsson et al., 2015; Mulukutla et al., 2012). After

evaluation of the experimental data, the model for HK was

updated to include this inhibitory effect of lactate on it:

v HK v
Glc

K Glc

K

K Lac

( ) = ×
+

×
+

.

max HK
m Glc

i LactoHK

i LactoHK

R1

,
,

,

,  

(7)

2. Since lactate inhibits glutaminase activity—the enzyme responsi-

ble for converting glutamine (GLN) to glutamate (GLU) (Glacken

et al., 1988; Hassell et al., 1991)—the forward (f ) flux rate for the

reaction, that is, Gln ↔Glu + NH4, was updated,

v GLNSf v
Gln

Km Gln Gln

K

K Lac

( ) = ×
, +

×
+

.

max fGLNS

i LactoGLNS

i LactoGLNS

R2

,

,

,  

(8)

3. Several regulatory functions, adapted from the studies

(Ghorbaniaghdam et al., 2014, 2013, 2014), were evaluated using

the experimental data to characterize activations and inhibitions.

F IGURE 2 An illustration of the iPSC regulatory metabolic
network (Created with BioRender.com). Glycolysis, PPP, TCA and
anaplerosis and amino acid utilization are shown. Additionally, the
regulatory mechanisms included in the dynamic model are shown.
The metabolites descriptions are listed in Table A3. The enzyme
description, including the Enzyme Commission Numbers (EC‐No.) for
each reaction, is listed in Table A4. iPSC, induced pluripotent stem
cells; PPP, pentose phosphate pathway; TCA, tricarboxylic acid.
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The regulatory mechanisms involved in glycolysis are described

as: (a) hexokinase inhibition by its product G6P, see R3 in eq (9);

(b) activation of pyruvate kinase by F6P, see R4 in eq (10), as well

as (c) the inhibition of lactate dehydrogenase reverse (r ) reaction,

see R5 in eq (11), was changed to include the G6P inhibition:

v HK v
Glc

K Glc

K

K Lac

K

K G P

( ) = ×
+

×
+

×
+ 6

;

max HK
m Glc

i LactoHK

i LactoHK

i G P

i G P

R3

,
,

,

,

, 6

, 6  

(9)

v PK v

PEP

K
K

F P
PEP

( ) =

×

× 1 +
6

+

;

max PK

m PEP
a F P

R4

,

,
, 6







  

(10)

v LDHr v
Lac

K Lac

K

K Pyr

( ) = ×
+

×
+

.

max rLDH
m Lac

i Pyr

i Pyr

R5

,
,

,

,  

(11)

4. Both lactate and pyruvate transport across the plasma membrane

are facilitated by proton‐linked monocarboxylate transporters

(MCTs) (Halestrap, 2012; Huckabee, 1956). More favorable

lactate transport kinetics may decrease pyruvate consumption

under high lactate culture conditions (Draoui & Feron, 2011;

Odenwelder et al., 2021). Thus, the model of PyrT was updated

to:

v PyrT v
EPyr

K EPyr

K

K Lac

( ) = ×
+

×
+

.

max PyrT
m EPyr

i LactoPyr

i LactoPyr

R6

,
,

,

,  

(12)

5. Since the transportation of extracellular‐glutamine via cell

membrane can be inhibited by intracellular‐glutamine, the model

for GlnT was updated to:

v GlnT v
EGln

K EGln

K

K GLN

( ) = ×
+

×
+

.

max GlnT
m EGln

i GLN

i GLN

R7

,
,

,

,  

(13)

3.4 | Model fit and goodness‐of‐fit assessment

The proposed iPSC metabolic network kinetic model focuses on

characterizing central carbon metabolism, including significant

reactions from glycolysis, the TCA cycle, anaplerosis, PPP, and amino

acid metabolism, along with regulatory mechanisms, across distinct

cultural environments characterized by varying levels of glucose and

lactate concentrations. The final model developed is shown in

Table A1. This model includes 30 metabolic reactions with 32

variables (metabolites' concentration) in the reaction equations. The

iPSC metabolic flux rate regulation biokinetic model, presented in

Table A2, incorporates key activators and inhibitors for each reaction,

describing the regulatory effects through the MM model. The

proposed iPSC culture kinetic model estimates model parameters

using both extracellular and MID data collected over time under the

four different culture conditions. The extracellular metabolite

concentration measurements at time t are denoted as st
meas for

t = 0, 12, 24, 36, 48 hours (h). To ensure the model's accuracy and

minimize the impact of measurement errors, values that fell below

the detection limit of the Cedex Bioanalyzer are treated as missing

data. The intracellular isotopic labeling measurements at time t′ are

denoted as MIDt
meas
′ for t′ = 24 and 48 h. The MID measurements

obtained from [U‐ C13
3] lactate for the high glucose high lactate and

low glucose high lactate cultures exhibited considerable measure-

ment errors, as reported in the study (Odenwelder et al., 2021).

Consequently, these measurements were intentionally excluded from

the training data set used for developing the proposed model.

For model fitting, the objective is to minimize the weighted sum

of squared residuals (SSR) between the available experimental data,

which includes both extracellular metabolite concentrations (st
meas)

and intracellular isotopic labeling (MIDt
meas
′ ), and the corresponding

model‐predicted values (st
sim andMIDt

sim
′ ),

( ) ( )
∑ ∑

s s

var var
min SSR =

−
+

MID − MID
,

t

T t
sim

t
meas

t
s

t

T
t
sim

t
meas

t
M

=1

2

′=1

′
′ ′

2

′

(14)

where the weights are the inverse of the variances of the

experimental measurements on extracellular metabolites and MIDs,

that is, (vart
s, vart

M
′ ). The fitting criteria in eq (14) allows the model to

systematically and effectively fit the metabolic regulation network at

different times.

The initial conditions for extracellular metabolites were obtained

from culture data. As the experimental data only includes the relative

abundance and the MIDs, estimates for the initial intracellular

metabolite concentrations were sourced from the BRENDA Enzyme

Database (Chang et al., 2021) and related references for mammalian

cells cultured under similar conditions. Similarly, the initial kinetic

parameter values were taken from the BRENDA Enzyme Database

(Chang et al., 2021) and relevant references for similar metabolic

networks and pathways.

The goodness‐of‐fit for the developed iPSC metabolic kinetic

model was assessed based on predictions using a χ2 test. Basically,

the null hypothesis is that the fitted model can faithfully represent

the iPSC culture metabolic mechanism. This test assumes that the

minimized variance‐weighted SSR follows a χ2 distribution with d

degrees of freedom, where the degree of freedom d equals the

number of observations minus the number of fitted parameters. In
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this study, the χ2 statistical test has p‐value much greater than 0.05

indicating the model predictions are not significantly different than

the measured values.

4 | RESULTS AND DISCUSSION

The proposed mechanistic model was developed based on a small set

of experimental data (see Section 2) and the model predictive

performance was then validated in two manners. First, to mimic the

dynamic data collection and assess the rolling forecasts required for

process control, at any time t, historical data were used to fit the

model up to t and then the fitted model was used to predict the

remainder of the culture behavior. In Section 4.1, the model's ability

to capture the dynamic evolution of iPSC metabolic characteristics

was evaluated. The model was trained on experimental data collected

over different time intervals (0−12‐h, 0−24‐h, and 0−36‐h), and used

to predict the iPSC culture for up to 48‐h.

Second, to assess the model's ability to generalize and

extrapolate to new culture conditions, three data sets, randomly

selected from (1) HGLL; (2) HGHL; (3) LGLL; and (4) LGHL, were used

to predict the fourth data set with different initial conditions in

Section 4.2. Basically, three data sets were used to train the model,

and then the model was used to predict the fourth data set behaviors.

This training/test data set selection and evaluation strategy is built on

the philosophy of cross validation that is often used in the literature

on model selection (McLachlan, 2005; Refaeilzadeh et al., 2009). Each

culture condition was examined in succession using the other three

data sets. Therefore, by validating the model's prediction perform-

ance under different experimental conditions, its robustness and

usefulness for predicting iPSC characteristics in a variety of settings is

verified.

4.1 | Prediction of iPSC culture process

During the model validation process, the proposed model simula-

tor was trained using experimental data collected over various

time intervals (0−12‐h, 0−24‐h, and 0−36‐h). The model's ability to

predict the dynamic trajectories of key metabolites, including

glucose, lactate, glutamate, glutamine, and pyruvate, as well as cell

density, was evaluated by comparing the predicted values to

experimental observations up to 48 h. Figure 3 provides a

representative result of the cell culture process prediction for

the case starting with HGLL. The results for the remaining settings,

including HGHL, LGLL, and LGHL, are presented in Appendix

Figure B1−B3.

The χ2 test was employed to assess the goodness‐of‐fit of the

proposed mechanistic model trained using the historical data

collected in different time intervals. The statistical test for the

model trained on 0−12‐h of experimental data yielded a value of

33.6 with 47 degrees of freedom (p = 0.93). Similarly, for the model

trained on 0−23‐h and 0−36‐h of experimental data, the test

statistics was 82.6 with 107 degrees of freedom (p = 0.96) and

138.1 with 167 degrees of freedom (p = 0.95), respectively. All of

the p exceed 0.05, suggesting that the proposed metabolic kinetics

F IGURE 3 Dynamic model trained with historical data collected under different time intervals—Cell characteristic predictions for high
glucose and low lactate cultures. (a) Cell density, (b) Glucose, (c) Lactate, (d) Glutamine, (e) Glutamate, and (f) Pyruvate. Times 0−12‐h (green
dotted line); Times 0−24‐h (brown dashed line); and Times 0−36‐h (purple solid line). The detection limit of the Cedex Bioanalyzer is shown as
the red dash‐dot line.
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model fits well with the experimental data set. The results in

Figure 3 demonstrate that the fitted model can provide improved

predictions for most of the metabolite trajectories as more data are

collected over time.

Overall, the predicted profiles of the iPSC cultures can closely

track the dynamic patterns of the measured profiles and capture

the cell culture dynamics. The experimental iPSC data were

obtained from plates and dishes with limited space. Even though

the overall growth rates were the same across the four conditions

by experimental design, the growth rate decreased with time as

nutrients were consumed and metabolic wastes accumulated. It is

important to note that the developed mechanistic metabolic

kinetic model is a simplified representation of the iPSC central

carbon metabolic network, there could likely be some key

metabolic regulations and biochemical reactions that were not

incorporated. The less accurate predictive performances for

lactate (under low lactate conditions) and glutamate may be due

to the omission of key reactions or regulatory functions. For

example, as suggested by the calibrated model in previous studies

(Ghorbaniaghdam et al., 2014, 2013, 2014), the membrane

transportation of glutamate for mammalian cells is significantly

impacted by the energetic state (ATP and ADP), and the forward

and reverse conversion of lactate to pyruvate is influenced by the

redox level (NAD and NADH).

Since the redox level and energetic state‐related measurements

were not collected for the iPSC cultures, these factors were not

accounted for in the current model. The study (Nolan & Lee, 2011)

found for CHO cells, a redox parameter assisted with lactate

predictions; however, the redox parameter implemented by this

study was unmeasurable and thus would be difficult to incorporate

into a control model. Furthermore, the lower prediction performance

for glutamate may be attributed to its involvement in multiple

reactions (see Figure 2), leading to error accumulation over time.

Future work should address these limitations with more comprehen-

sive experimental data for iPSC cultures.

4.2 | Prediction across different initial conditions

To assess the predictive capability of the proposed mechanistic

model across various initial culture conditions and enhance the

understanding of iPSCs response to environmental changes, specifi-

cally glucose and lactate, a cross‐validation approach was employed.

This approach first trained the model with three of the four data sets

(i.e., HGLL, HGHL, LGLL, and HGHL). The remaining data set behavior

was then predicted. This approach provided valuable insight for

optimizing Design of Experiments strategies in the realm of in silico

experimentation.

The model cross‐validation prediction for the HGLL culture was

evaluated using the model trained on HGHL, LGLL, and LGHL data

sets, as illustrated in Figure 4. The other three across‐validation

predictions are provided in Appendix Figure C1−C3. Cell density and

key metabolites (i.e., glucose, lactate, glutamate, glutamine, and

pyruvate) were predicted and are shown with the average of the

measured values with standard deviations. To evaluate the goodness‐

of‐fit, the χ2 test SSR statistics is 783 with 802 degrees of freedom

with p = 0.67 much greater than 0.05. This p‐value indicates that the

metabolic kinetic model can faithfully represent the iPSC culture

F IGURE 4 Dynamic model trained with three other data sets with varied initial glucose and lactate concentrations for cell characteristic
predictions in high glucose and low lactate cultures. (a) Cell density, (b) Glucose, (c) Lactate, (d) Glutamine, (e) Glutamate, and (f) Pyruvate. The
detection limit of the Cedex Bioanalyzer is shown as the red dash‐dot line.

1342 | WANG ET AL.

 10970290, 2024, 4, D
ow

nloaded from
 https://analyticalsciencejournals.onlinelibrary.w

iley.com
/doi/10.1002/bit.28609, W

iley O
nline L

ibrary on [25/06/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



regulatory mechanisms under different levels of glucose and lactate

concentrations.

The predictions of intracellular MID from the [1,2‐ C13
2] glucose

and [U‐ C13
5] glutamine tracer at 48‐h under the control (HGLL)

culture condition are shown in Figure 5 and 6, respectively. Even

though there is some prediction error, the simulation model can

correctly predict the dynamics and interdependencies of multivariate

iPSC culture process metabolism. The developed metabolic kinetic

model can faithfully predict the cell response to environmental

perturbation, which could guide the strategic feeding strategy for the

integrated iPSC culture process for future research. In addition, by

incorporating even the simplified PPP reactions, the M+1 isotopic

labeling pattern for pyruvate and related metabolites from [1,2‐ C13
2]

glucose tracer can be well‐predicted.

The prediction of metabolic flux maps for K3 iPSC under

control culture at 24‐h and 48‐h are shown in Figure 7. The

prediction performance of metabolic concentration trajectory and

flux maps for K3 iPSC under HGHL, LGLL, and LGHL are provided

in Appendix Figure D1−D3. Since no restrictive steady‐state

assumption was required for the developed metabolic kinetic

model, the flow‐in flux is not required to be equal to the flow‐out

flux for each metabolite.

The prediction of metabolic flux dynamics for K3 iPSC culture

reveals several significant observations. First, the glycolytic effi-

ciency, which measures how effectively K3 iPSCs utilize glucose as an

energy source, remained consistently high across all conditions,

exceeding 1.6 and approaching the theoretical maximum of 2.0 moles

of lactate produced per mole of glucose consumed. This suggests that

K3 iPSCs are efficiently converting glucose into lactate with minimal

byproduct production. Second, the [U‐ C13
3] lactate tracer showed

that K3 iPSCs consumed and metabolized lactate in the high lactate

cultures. However, in all four culture conditions, there was a net

production of lactate, indicating that K3 iPSCs produced and also

consumed lactate in the high lactate culture conditions. Third, in the

control experimental setting, as the iPSC cultures approached the late

exponential phase, there was a gradual increase in the flux rates of

the TCA cycle, consistent with findings reported in a previous

literature study (Templeton et al., 2013). Finally, the mechanistic

model successfully predicted the reduced glutamine consumption

fluxes under high lactate culture conditions, along with a decrease in

the conversion of glutamine to AKG. Consequently, the model also

predicted slightly lower fluxes through key TCA cycle reactions such

as α‐ketoglutarate dehydrogenase, succinate dehydrogenase, malate

dehydrogenase, fumarase, and citrate synthase.

Table 2 lists the predictions of biomass‐specific uptake and

production rates for critical extracellular metabolites at 12 and 36‐h.

The table also includes the average flux between 12 and 36‐h, as

determined by the Extracellular Time‐Course Analysis (ETA) software

(Murphy & Young, 2013), for comparison. The general mass balance

equation, constructed by ETA, which describes the dynamics in the

concentration of the i‐th extracellular metabolite under batch growth

conditions, is given by

ds t

dt
r X t

( )
= ( ),

i
i

where s t( )i represents the concentration of the i‐th metabolite at time

t, ri is the specific rate of metabolite consumption or production, and

X t( ) stands for cell density at time t. This equation assumes no

degradation of metabolites. Notice that ETA results are based on the

assumption of metabolic steady‐state, meaning that the consumption

or production rate ri of any i‐th metabolite remains constant and it is

not influenced by the changes in extracellular or intracellular

concentrations. This assumption explains why most flux estimations

using the ETA approach for 12−36‐h fall within the range of the

model predictions at 12 and 36‐h.

Under conditions of limited substrate availability, there are

significant changes in consumption rates, as exemplified by glucose in

LGLL and LGHL cultures, as well as pyruvate in all four conditions.

Unlike averaging approaches (e.g., ETA model), the proposed

metabolic kinetic model effectively captures these essential dynamic

behaviors. This capability holds promise for facilitating future

research on the end‐to‐end cell culture process optimal control to

improve high‐quality iPSC production. Additionally, as stirred

F IGURE 5 MID measurements and predictions for the [1,2‐ C13
2]

glucose tracer at 48‐h for high glucose low lactate cultures using the
dynamic model trained on the other three data sets compared to
literature measurements. MIDs shown have been corrected for
natural abundance. MIDs, mass isotopomer distribution.

F IGURE 6 MID measurements and predictions for the [U‐ C13
5]

glutamine tracer at 48‐h for high glucose low lactate cultures using
the dynamic model trained on the other three data sets compared to
literature measurements. MIDs shown have been corrected for
natural abundance. MIDs, mass isotopomer distribution.
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suspension cultures become a common choice for large‐scale iPSC

manufacturing (Borys et al., 2020; Meng et al., 2017), this study can

also contribute to the understanding of cell behavior within

aggregates, as the well‐established pattern involves LGHL concen-

trations at the aggregate center (Kinney et al., 2011).

By modeling the regulatory mechanisms outlined in Section 3.3,

the results presented in Table 2 are consistent with observations

reported in existing studies (Costa Leite et al., 2007;

Ghorbaniaghdam et al., 2014, 2013, 2014; Glacken et al., 1988;

Halestrap, 2012; Hassell et al., 1991; Huckabee, 1956; Ivarsson

et al., 2015; Mulukutla et al., 2012). The ability of the proposed model

to accurately predict cell dynamic behavior and response under

varying environmental conditions reaffirms its reliability and under-

scores its potential to enhance the optimization and control of iPSC

culture processes. Specifically, the model indicates that the con-

sumption rate of glucose increases with higher extracellular glucose

F IGURE 7 Metabolic flux maps for K3 iPSC for the high glucose and low lactate cultures at 24−48‐h. Predicted fluxes are given in nmol/106

cells⋅h. The line thicknesses represent the relative fluxes. iPSC, induced pluripotent stem cells.

TABLE 2 Dynamic model prediction for biomass‐specific uptake and production rates for key extracellular metabolite (nmol/10 6 cells⋅h).

Metabolite
HGLL (nmol/10 6 cells⋅h) LGLL (nmol/10 6 cells⋅h)
12‐h 36‐h 12−36‐h (ETA) 12‐h 36‐h 12−36‐h (ETA)

Glucose −1910 −1132 −1051 −1664 −826 −994

Lactate 1410 2145 2108 1400 2096 2000

Pyruvate −109 −58.2 −67.7 −109 −60.2 −75.2

Glutamate 35.4 53.3 36.2 35.5 54.4 32.4

Glutamine −221 −180 −132 −224 −178 −147

HGHL (nmol cells∕10 h6 ⋅ ) LGHL (nmol cells∕10 h6 ⋅ )
Metabolite 12‐h 36‐h 12−36‐h (ETA) 12‐h 36‐h 12−36‐h (ETA)

Glucose −880 −773 −874 −763 −628 −860

Lactate 1332 1602 1694 1314 1388 1651

Pyruvate −71.2 −53.4 −39 −71.9 −53.3 −36.5

Glutamate 31.1 49.2 28.3 31.6 49.8 29.4

Glutamine −206 −161 −107 −202 −160 −120

Note: The fluxes obtained by Extracellular Time‐Course Analysis (ETA) for 12−36‐h are calculated averages from measurements (Odenwelder et al., 2021),

while the 12 and 36‐h fluxes predicted by the developed metabolic kinetic model are calculated for that specific time point. Negative values represent
consumption rates and positive values represent production rates.
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concentrations (e.g., HGLL vs. LGLL and HGHL vs. LGHL), while it

decreases with higher extracellular lactate concentrations (e.g., HGLL

vs. HGHL and LGLL vs. LGHL). These trends can be attributed to

regulatory mechanism R1 as described in eq (7). Regarding lactate,

the model reveals that the net production rate is lower when a

certain amount of lactate exists in the cultural environment (e.g.,

HGLL vs. HGHL and LGLL vs. LGHL). In the case of pyruvate, under

high lactate culture conditions, more favorable lactate transport

kinetics of MCTs result in decreased pyruvate consumption (e.g.,

HGLL vs. HGHL and LGLL vs. LGHL). These observations are

associated with regulatory mechanism R6 as explained in eq (12).

Furthermore, the presence of lactate dampens the conversion of

glutamine to glutamate. Consequently, under high lactate culture

conditions, the consumption rate of glutamine and the production

rate of glutamate decrease (e.g., HGLL vs. HGHL and LGLL vs. LGHL).

These behaviors are linked to regulatory mechanisms R2 in eq (8) and

R7 in eq (13).

5 | CONCLUSIONS

In this paper, a metabolic kinetic model is described that char-

acterizes the time‐varying dynamics and regulatory mechanisms of

the iPSC cultures. This model detailed central carbon metabolism,

including glycolysis, TCA cycle, PPP, anaplerosis, and key amino acid

metabolism. The iPSC metabolic regulatory network was calibrated

using extracellular metabolite concentrations and intracellular iso-

topic data for multiple tracers (i.e., [1,2‐ C13
2] glucose and [U‐ C13

5]

glutamine tracers). These time‐course measurements were collected

at multiple time points for the different culture conditions. The

validation results demonstrate that the developed metabolic kinetic

model can provide a reliable prediction on iPSC metabolic response

to changes in extracellular glucose and lactate levels.

This model holds substantial potential for advancing the

understanding of complex intracellular regulatory mechanisms

within iPSC cultures. Furthermore, it empowers continuous

monitoring and precise control of cell cultures, particularly

advantageous in the realm of large‐scale manufacturing. In

summary, the proposed mechanistic model holds the potential to

facilitate the optimization and control of iPSC cultures, potentially

even at large scales, ensuring the survival, productivity, and quality

of iPSC‐derived cell products.
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APPENDIX A: APPENDIX: TABLE

The following tables summarize detailed information about the

constructed induced pluripotent stem cells (iPSCs) metabolic network

and developed kinetic model.

1. The iPSC metabolic network contains the major reactions

for glycolysis, the tricarboxylic acid (TCA) cycle, anaplerosis,

pentose phosphate pathway (PPP), and amino acid

metabolism; see the specific reactions in Table A1. The

reactions of PPP are collapsed into two: Oxidative phase/

branch and Non‐oxidative phase/branch (i.e., No. 9 & 10

reactions).

2. The iPSC metabolic flux rate regulation biokinetic model is

summarized in Table A2. The Michaelis‐Menten (MM) model is

used to characterize how key activators and inhibitors influence

regulatory mechanisms in each reaction.

3. The descriptions of the metabolites, considered in the developed

metabolic kinetic model, are listed in Table A3.
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4. For the developed metabolic kinetic model, the descriptions of the

enzymes with Enzyme Commission Number (EC‐No.) are provided

in Table A4. They are associated with metabolic flux reaction

rates.

TABLE A1 Reactions of the metabolic network.

No. Pathway

Glycolysis

1 Glc(abcdef)→ G6P(abcdef)

2 G6P(abcdef) → F6P(abcdef)

3 F6P(abcdef) → GAP(cba) + GAP (def)

4 GAP(abc)→ PEP(abc)

5 PEP(abc) → Pyr(abc)

6 Pyr(abc) ↔ Lac(abc)

7 EPyr(abc) → Pyr(abc)

8 Lac(abc) ↔ ELac(abc)

PPP

9 G6P(abcdef)→ Ru5P(bcdef) + CO2(a)

10 Ru5P(abcde) + Ru5P(fghij) + Ru5P(klmno) → F6P(fgahij) +F6P
(klbcde) + GAP(mno)

TCA

11 Pyr(abc)→ AcCoA(bc) + CO2(a)

12 AcCoA(ab) + OAA(cdef)→ Cit(fedbac)

13 Cit(abcdef) ↔ AKG(abcde) + CO2(f)

14 AKG(abcde) → Suc(bcde) + CO2(a)

15 Suc(abcd)→ Fum(abcd)

16 Fum(abcd) ↔ Mal(abcd)

17 Mal(abcd) ↔ OAA(abcd)

Anaplerosis and Amino Acid

18 Mal(abcd)→ Pyr(abc) + CO2(d)

19 Pyr(abc) + CO2(d)→ OAA(abcd)

20 Gln(abcde) ↔ Glu(abcde) + NH4

21 Glu(abcde) ↔ AKG(abcde) + NH4

22 Glu(abcde) + Pyr(fgh) ↔ AKG(abcde) + Ala(fgh)

23 Ala(abc)→ EAla(abc)

24 Glu(abcde)→ EGlu(abcde)

25 EGln(abcde) → Gln(abcde)

26 Ser(abc)→ Pyr(abc) + NH4

27 Asp(fghi) + AKG(abcde) ↔ Glu(abcde) + OAA(fghi) + NH4

28 EAsp(abcd)→ Asp(abcd)

29 Cit(abcdef)→ Mal(fcba) + Lipids

Biomass

30 0.19 Ala + 0.11 Asp + 0.1 Gln + 0.12 Glu + 0.17 Gly + 0.14 Ser
+ 0.16 Glc→ Biomass

TABLE A2 Biokinetic equations of the metabolites fluxes (1−30)
of the model.

No. Pathway

Glycolysis

1 v HK v( ) = × × ×max HK
Glc

K Glc

K

K G P

K

K Lac, + + 6 +m Glc

i G P

i G P

i LactoHK

i LactoHK,

, 6

, 6

,

,

2 v PGI v( ) = ×max PGI
G P

K G P,
6

+ 6m G P, 6

3 v PFK ALD v( ∕ ) = ×max PFK ALD
F P

K F P, ∕
6

+ 6m F P, 6

4 v PGK v( ) = ×max PGK
GAP

K GAP, +m GAP,

5 v PK v( ) = ×max PK
PEP

K PEP
,

× (1 + ) +m PEP
Ka F P

F P,
, 6

6

6f vLDHf v= ×max fLDH
Pyr

K Pyr, +m Pyr,

6r v LDHr v( ) = × ×max rLDH
Lac

K Lac

K

K Pyr, + +m Lac

i Pyr

i Pyr,

,

,

7 v PyrT v( ) = × ×max PyrT
EPyr

K EPyr

K

K Lac, + +m EPyr

i LactoPyr

i LactoPyr,

,

,

8f v LacTf v( ) = ×max fLacT
Lac

K Lac, +m Lac,

8r v LacTr v( ) = ×max rLacT
ELac

K ELac, +m ELac,

PPP

9 v OP v( ) = ×max OP
G P

K G P,
6

+ 6m G P, 6

10 v NOP v( ) = ×max NOP
Ru P

K Ru P,
5

+ 5m Ru P, 5

TCA

11 v PDH v( ) = ×max PDH
Pyr

K Pyr, +m Pyr,

12 v CS v( ) = × ×max CS
AcCoA

K AcCoA

OAA

K OAA, + +m AcCoA m OAA, ,

13f v CITS ISODf v( ∕ ) = ×max fCITS ISOD
Cit

K Cit, ∕ +m Cit,

13r v CITS ISODr v( ∕ ) = ×max rCITS ISOD
AKG

K AKG, ∕ +m AKG,

14 v AKGDH v( ) = ×max AKGDH
AKG

K AKG, +m AKG,

15 v SDH v( ) = ×max SDH
Suc

K Suc, +m SUC,

16f v FUMf v( ) = ×max fFUM
Fum

K Fum, +m Fum,

16r v FUMr v( ) = ×max rFUM
Mal

K Mal, +m Mal,

17f v MDHf v( ) = ×max fMDH
Mal

K Mal, +m Mal,

17r v MDHr v( ) = ×max rMDH
OAA

K OAA, +m OAA,

Anaplerosis and Amino Acid

18 v ME v( ) = ×max ME
Mal

K Mal, +m Mal,

19 v PC v( ) = ×max PC
Pyr

K Pyr, +m Pyr,

20f v GLNSf v( ) = × ×max fGLNS
Gln

K Gln

K

K Lac, + +m Gln

i LactoGLNS

i LactoGLNS,

,

,

20r v GLNSr v( ) = × ×max rGLNS
Glu

K Glu

NH

K NH, + +m Glu m NH,

4

, 4 4

21f v GLDHf v( ) = ×max fGLDH
Glu

K Glu, +m Glu,

(Continues)
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TABLE A2 (Continued)

No. Pathway

21r v GLDHr v( ) = × ×max rGLDH
AKG

K AKG

NH

K NH, + +m AKG m NH,

4

, 4 4

22f v AlaTAf v( ) = × ×max fAlaTA
Glu

K Glu

Pyr

K Pyr, + +m GLU m Pyr, ,

22r ( )v AlaTAr v( ) = × × × 1 +max rAlaTA
Ala

K Ala

AKG

K AKG

K

Gln, + +m Ala m AKG

a Gln

, ,

,

23 v AlaT v( ) = ×max AlaT
Ala

K Ala, +m Ala,

24 v GluT v( ) = ×max GluT
Glu

K Glu, +m Glu,

25 v GlnT v( ) = × ×max GlnT
EGln

K EGln

K

K GLN, + +m EGln

i GLN

i GLN,

,

,

26 v SAL v( ) = ×max SAL
Ser

K Ser, +m Ser,

27f v ASTAf v( ) = × ×max fASTA
Asp

K Asp

AKG

K AKG, + +m ASP m AKG, ,

27r v ASTAr v( ) = × × ×max rASTA
Glu

K Glu

OAA

K OAA

NH

K NH, + + +m Glu m OAA m NH, ,

4

, 4 4

28 v AspT v( ) = ×max AspT
EAsp

K EAsp, +m EAsp,

29 v ACL v( ) = ×max ACL
Cit

K Cit, +m Cit,

Biomass

30 v growth v( ) = × × ×

× × × ×

max growth
Gln

K Gln

Glc

K Glc

Glu

K Glu

Ala

K Ala

Asp

K Asp

Ser

K Ser

Gly

K Gly

, + + +

+ + + +

m Gln m Glc m Glu

m Ala m Asp m Ser m Gly

, , ,

, , , ,

TABLE A3 Description of the metabolite.

Component Description Component Description

ACCoA Acetyl‐CoezymeA ALA Alanine

AKG α‐Ketoglutarate ASP Aspartate

CIT Citrate LAC Lactate

CO2 Intracellular

Carbonoxygen

GLN Glutamine

F6P Fructose 6‐Phosphate EGLY Extracellular Glycine

G6P Glucose 6‐Phosphate SER Extracellular Serine

GAP Glyceraldehyde

3‐Phosphate
GLC Extracellular Glucose

GLU Glutamate EGLN Extracellular

Glutamine

GLY Glycine EGLU Extracellular

Glutamate

MAL Malate EPYR Extracellular Pyruvate

OAA Oxaloacetate EASP Extracellular Aspartate

PEP Phosphoenolpyruvate EALA Extracellular Alanine

FUM Fumarate ELAC Extracellular Lactate

Ru5P Ribulose 5‐Phosphate NH4 Extracellular Ammonia

SUC Succinate LIPID Lipid

PYR Pyruvate Bio Biomass

TABLE A4 Description of the enzyme.

Abbreviation Description EC‐No.

HK Hexokinase 2.7.1.1

PGI Phosphoglucose Isomerase 5.3.1.9

PFK/ALD Phosphofructokinase/Aldolase 2.7.1.11/4.1.2.13

PGK Phosphoglycerate Kinase 2.7.2.3

PK Pyruvate Kinase 2.7.1.40

OP Oxidative Phase of PPP

NOP Non‐oxidative Phase of PPP

PyrT Membrane Transport of Pyruvate

SAL Membrane Transport of Serine

LDH Lactate Dehydrogenase 1.1.1.27

AlaTA Alanine Transaminase 2.6.1.2

PC Pyruvate Carboxylase 6.4.1.1

PDH Pyruvate Dehydrogenase 1.2.4.1

CS Citrate (Si)‐Synthase 2.3.3.1

CITS/ISOD Aconitase/Isocitrate Dehydrogenase 4.2.1.3/1.1.1.41

GLDH Glutamate Dehydrogenase 1.4.1.2

GluT Membrane Transport of Glutamate

GLNS Glutamine Synthetase 6.3.1.2

AKGDH α‐ketoglutarate Dehydrogenase 1.2.1.105

SDH Succinate Dehydrogenase 1.3.5.1

MDH Malate Dehydrigenase 1.1.1.37

ME Malic Enzyme 1.1.1.40

ASTA Aspartate Aminotransferase 2.6.1.1

ACL ATP citrate synthase 2.3.3.8

FUM Fumarase 4.2.1.2

APPENDIX B: APPENDIX: CELL CHARACTERISTIC

PREDICTIONS

Figures B1–B3 depict the model's predictions for iPSC cultures in

three scenarios: high glucose and high lactate (HGHL), low glucose

and low lactate (LGLL), and low glucose and high lactate cultures

(LGHL). Predictions are based on training the model using data

collected over various time intervals.

APPENDIX C: APPENDIX: CELL CHARACTERISTIC

ACROSS CULTURE CONDITION PREDICTIONS

Figures C1–C3 depict prediction results across various initial conditions,

including high glucose and high lactate (HGHL), LGLL, and LGHL. The

model's fitting is based on data from the remaining three cases.

APPENDIX D: APPENDIX: METABOLIC FLUX MAPS

Figure D1–D3 depict the metabolic flux maps for iPSC culture at

24−48‐h respectively under the initial conditions, including HGHL,

LGLL, and LGHL.
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F IGURE B1 Dynamic model trained with different time intervals—Cell characteristic predictions for high glucose and high lactate cultures.
(a) Cell density, (b) Glucose, (c) Lactate, (d) Glutamine, (e) Glutamate, and (f) Pyruvate. Times 0−12‐h (green dotted line); Times 0−24‐h (brown
dashed line); and Times 0‐h to 36‐h (purple solid line). The detection limit of the Cedex Bioanalyzer is shown as the red dash‐dot line.

F IGURE B2 Dynamic model trained with different time intervals—Cell characteristic predictions for low glucose and low lactate cultures.
(a) Cell density, (b) Glucose, (c) Lactate, (d) Glutamine, (e) Glutamate, and (f) Pyruvate. Times 0−12‐h (green dotted line); Times 0−24‐h (brown
dashed line); and Times 0−36‐h (purple solid line). The detection limit of the Cedex Bioanalyzer is shown as the red dash‐dot line.
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F IGURE B3 Dynamic model trained with different time intervals ‐ Cell characteristic predictions for low glucose and high lactate cultures.
(a) Cell density, (b) Glucose, (c) Lactate, (d) Glutamine, (e) Glutamate, and (f) Pyruvate. Times 0−12‐h (green dotted line); Times 0−24‐h (brown
dashed line); and Times 0−36‐h (purple solid line). The detection limit of the Cedex Bioanalyzer is shown as the red dash‐dot line.

F IGURE C1 Dynamic model trained with three other data sets with varied initial glucose and lactate concentrations for cell characteristic
predictions in high glucose and high lactate cultures. (a) Cell density, (b) Glucose, (c) Lactate, (d) Glutamine, (e) Glutamate, and (f) Pyruvate. The
detection limit of the Cedex Bioanalyzer is shown as the red dash‐dot line.
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F IGURE C2 Dynamic model trained with three other data sets with varied initial glucose and lactate concentrations for cell characteristic
predictions in low glucose and low lactate cultures. (a) Cell density, (b) Glucose, (c) Lactate, (d) Glutamine, (e) Glutamate, and (f) Pyruvate. The
detection limit of the Cedex Bioanalyzer is shown as the red dash‐dot line.

F IGURE C3 Dynamic model trained with three other data sets with varied initial glucose and lactate concentrations for cell characteristic
predictions in low glucose and high lactate cultures. (a) Cell density, (b) Glucose, (c) Lactate, (d) Glutamine, (e) Glutamate, and (f) Pyruvate. The
detection limit of the Cedex Bioanalyzer is shown as the red dash‐dot line.
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F IGURE D1 Metabolic flux maps for K3 iPSC for the high glucose and high lactate cultures at 24−48‐h. Predicted fluxes are given in nmol/
106 cells⋅h. The line thicknesses represent the relative fluxes. iPSC, induced pluripotent stem cells.

F IGURE D2 Metabolic flux maps for K3 iPSC for the low glucose and low lactate cultures at 24−48‐h. Predicted fluxes are given in nmol/106

cells⋅h. The line thicknesses represent the relative fluxes. iPSC, induced pluripotent stem cells.
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F IGURE D3 Metabolic flux maps for K3 iPSC for the low glucose and high lactate cultures at 24−8‐h. Predicted fluxes are given in nmol/106

cells⋅h. The line thicknesses represent the relative fluxes. iPSC, induced pluripotent stem cells.
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