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H I G H L I G H T S

• Transcriptomics analysis was used to study metabolism change over the batch culture.

• Metabolic pathway alternations were analyzed between high and low producers.

• Key pathways related to productivity increase and high productivity were elucidated.

• Combined transcriptomics and flux analysis allow to identify metabolic bottlenecks.
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A B S T R A C T

In this study, we presented an integrated systems biology approach to elucidate the key characteristics of cellular
metabolism in Chinese hamster ovary (CHO) cells producing monoclonal antibodies (mAb). The cellular me-
tabolism in high and low producers under batch conditions was interrogated dynamically both within and
among cells. First, transcriptomics analysis was used to study the time-course change in the metabolic pathway
within cells that was correlated with mAb productivity increase. Second, differentially regulated pathways be-
tween high and low producers were sought at each growth phase. Several up-regulated pathways were identified
in the high producer at the late growth phase, including citrate cycle, oxidative phosphorylation, and pentose
phosphate pathway. These activities were further analyzed by intracellular flux distributions estimated through
a genome-scale CHO model. Our results revealed that these key pathways are identified to be characteristics of
high mAb production, not only for the high-producing cell line but also a dynamic phenomenon in mAb-pro-
ducing cell cultures. This study showed that the approach of integrating transcriptomics and flux analysis leads
to a better understanding of cellular metabolism related to mAb productivity. In turn, this allows for the
identification of metabolic bottlenecks and potential engineering targets for cell line development and process
optimization.

1. Introduction

Chinese hamster ovary (CHO) cells are the predominant mammalian
host for therapeutic monoclonal antibodies (mAb) production. The
product yield in CHO cells has increased more than 100-fold over the
past several decades [1,2]. Much of this progress has been achieved
through experimental approaches including media and feeding strate-
gies, and process condition optimization [3–7]. Improved under-
standing of cellular metabolism in CHO cells continues to accelerate
rational cell line development and bioprocess optimization towards cell
growth or mAb production [8–10].

High-throughput omics data analysis for CHO cells have been re-
cently conducted [11–13]. Studies have explored the links between
gene expression and high productivity by the effect of temperature
downshift [14,15], autophagy inhibitor 3-methyladenine treatment
[16], and inducer treatment [15,17]. Similarly, proteomic-based tech-
niques were applied to distinguish enzyme expression differences be-
tween high and low producers [3,18]. Metabolomics based on liquid
chromatography-mass spectrometry (LC-MS) has also been used to ex-
plore the relationship between metabolite levels and high mAb pro-
ductivity [19].

While individual omics technologies can provide insights into the
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cellular metabolism, these omics are closely interconnected and should
be viewed by integration to study the biological system comprehen-
sively [20]. For example, gene expression levels may not always cor-
relate to protein regulation [21]. Similarly, protein expression alone
does not necessarily correlate with the change in enzymatic activity [1].
Therefore, combined omics approaches are needed to build connections
between phenotype and genotype and to provide a more comprehensive
understanding of cell physiology [22]. In this regard, the genome-scale
network of CHO metabolism offers an effective tool for integrating
omics data and metabolism understanding. This has been well de-
monstrated by several previous studies. For example, Hefzi et al. have
applied omic data to reveal an amino acid auxotrophies in different
CHO cell lines [23]. Yusufi et al. used the integration of transcriptomic
data with a genome-scale model, to find out that the antibody producer
has a substantial increase in energy metabolism than the wild-type CHO
cell [8]; subsequently, a study conducted by the same group unraveled
cell line-specific variations in protein processing abilities and glycosy-
lation profiles across different CHO host cell lines (including CHO-K1,
CHO-DXB11, and CHO-DG44) [24]. Recently, Vodopivec et al. applied
the genome-scale metabolic model to analyze the metabolomics data at
different fed-batch bioreactor scales (10L, 100L, and 1000L) and gained
insight into the metabolic states [25].

Cell dynamics are critical to the phenotypes of cell growth and mAb
production. To our knowledge, there has been no research reported to
investigate whether high-producing CHO cells would exhibit a different
metabolic characteristic (on metabolic pathway) than those with low
productivity in response to the growth phase transition. Current ad-
vances in transcriptomics analysis allow us to reveal and quantify
biological processes in CHO cells [13,24,26]. Gene expression profiles
can demonstrate which genes are active and allow us to deduce the
corresponding pathways utilized in cellular metabolism. Additionally,
changes in gene expression levels between culture conditions or cell
lines with different productivities may help in identifying which path-
ways are differentially regulated that could be potential targets for
improvement of mAb production. While gene expression profiles pro-
vide insights into transcriptional patterns, intracellular metabolic flux
describing the metabolic activity within the cell represents another
informative attribute of the cellular state.

Our objective was to apply transcriptomics, together with extra-
cellular metabolomics and a genome-scale metabolic model to decipher
the cellular metabolism in order to expand the understanding of which
metabolic pathways play a critical role in mAb production. To achieve
this, we applied a systems biology approach with a particular focus on
metabolic pathway analysis using two CHO cell lines displaying dif-
ferent mAb productivities. In this study, we first used transcriptomics to
screen for metabolic alteration during the course of cell culture.
Metabolic changes relevant to different productivity increases were
identified by the unique dynamic pattern of pathway regulation present
in either the high- or low-producing cell line. To obtain orthogonal
information, the characteristics of high productivity were further ex-
plored using metabolic pathway analysis from each culture stage be-
tween high- and low-producing cell lines. A genome-scale metabolic
model was then used to estimate the intracellular fluxes and enable an
analysis of cellular metabolism from the perspective of reaction rates.
As such, the combined studies of transcriptomics and flux analysis have
converged on the key characteristics of high-producing CHO cells,
which allows us to identify metabolic bottlenecks and potential en-
gineering targets for cell line development and process optimization.

2. Materials and methods

2.1. Cell culture experiments and measurements

Two glutamine synthetase (GS) CHO cell lines CHO-A and CHO-R
producing different mAbs were used in the study and termed high
producer (HP) and low producer (LP), respectively. The detailed

information on cell culture experiments can be found in the previous
publication [13]. Cells were cultured in commercial media CD For-
tiCHO (ThermoFisher Scientific, Waltham, MA) with an inoculation
density of 2×105 cells/mL and a working volume of 50mL in shake
flasks. For each cell line, triplicate flasks were cultured for seven days in
batch mode. Gene expression profiles were determined using RNA-se-
quencing (RNA-Seq) at day 3 and day 6, which corresponded to the
early and late exponential growth phase, respectively. All tran-
scriptomes were normalized as TPM (transcripts per million). Metabolic
genes for CHO cells were found in the published genome-scale CHO
model [23] or BIGG database (http://bigg.ucsd.edu). Wilcoxon rank
sum test, which is a nonparametric test without the assumption of
certain distribution, was implemented to evaluate the gene expression
profiles under different conditions [27–30]. The main idea of this test is
the ranks of the observations are used as test statistics instead of the
original gene expression values when comparing the gene expressions
between two independent groups.

The concentration of amino acids was measured using a HPLC
system (Shimadzu, Kyoto, Japan) connected with a triple quadrupole
mass spectrometer (Shimadzu, Kyoto, Japan) operated in positive
electrospray ionization mode. A column Scherzo SM-C18 (3 μm,
100× 3mm, IMTAKT) was used for the component separation. Amino
acid standard mixtures were separated using an Intrada Amino Acid
column (100× 3mm, 3 μm, IMTAKT, Japan). Mobile phase A (aqu-
eous) consisted of 0.3% v/v formic acid in acetonitrile and mobile
phase B (organic) consisted of 20% v/v acetonitrile in 100mM am-
monium formate. The chromatographic separation was accomplished
by different gradients of aqueous and organic phase as follows: the
mobile phase was started at 20% B for 4min, increased from 20% B to
100% B with a linear gradient for 10min, then maintained at 100% B
for 2min. The mobile phase was returned to 20% B and continued for
2min. LC conditions included column temperature at 37 °C, injection
volume of 10 μL, and mobile phase flow rate of 0.6mL/min. More de-
tailed information about the quantification of amino acids by LC–MS/
MS can be found as previously described [31].

2.2. Metabolic pathway analysis

Metabolic gene expression levels were considered different when
their fold change (i.e., the relative change in gene expression compared
to control) was at least 1.3 and p-value calculated from these two da-
tasets via ANOVA (Analysis of variance) should be less than 0.05. It is
important to note that the threshold is user-defined. In previous studies,
different fold-changes from 1.2 to 1.5 or higher have been used
[13,32–34]. KOBAS 3.0 was used to perform the pathway enrichment
analysis using identified differentially expressed genes (DEGs) [35]. In
statistics, the p-value of a particular pathway was calculated using the
hypergeometric test/Fisher’s exact test as follows:
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where N is the total number of genes mapped to all annotated pathways
in CHO cells; n is the total number of differentially expressed genes; M
is the total number of genes in the particular pathway under in-
vestigation; m is the number of differentially expressed genes in the
particular pathway [36–39]. In KOBAS 3.0, the resulting p-values in
enrichment analysis were adjusted for multiple testing using the Ben-
jamini-Hochberg method [40]. In this analysis, the pathways with ad-
justed p-value< 0.05 were considered as significantly enriched. The
Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway database
of Cricetulus griseus (Chinese hamster) was employed during the ana-
lysis (https://www.genome.jp/kegg/).
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2.3. Flux balance analysis using the genome-scale model

A recently published genome-scale CHO-S model was applied to
analyze the metabolism of CHO cells in this study [23]. Intracellular
metabolic fluxes were estimated by flux balance analysis (FBA) with the
optimization of a defined biological objective function using a linear
programming approach. The genome-scale model can be represented by
a stoichiometric matrix (S) of size ×m n (where m represents the
number of metabolites and n represents the number of reactions, re-
spectively) and a vector of reaction fluxes (v) [41–43]. The mass bal-
ance equations are given by × =S V 0 under the assumption of quasi-
steady-state. To obtain the solution, the genome-scale model was fur-
ther constrained by the boundaries of each flux. The value of the upper
bound was set to 1000 for all reactions; the value of the lower bound
was set to −1000 or 0 for reversible reactions and irreversible reac-
tions, respectively [23]. For this work, parsimonious enzyme usage FBA
(pFBA), which is a variant of FBA, was used for flux estimation [44].
This approach assumes that cells attempt to achieve optimal growth
with the most efficient allocation of resources (i.e., minimization of
enzyme usage) [45]. Therefore, a dual objective function, which is a
combination of maximizing growth rate and minimizing overall flux,
was applied to solve the flux distribution during the early and late
exponential growth phases in this study. The Constraint-Based Re-
construction and Analysis (COBRA) toolbox was used for FBA analysis
in this study [46,47]. Gurobi solver (https://www.gurobi.com/) was
applied to solve LP optimization problems. MATLAB (Matlab 2016a;
Mathworks, Natick, MA, USA) was used for the Wilcoxon test, ANOVA,
and FBA in this study.

The uptake and secretion rates of metabolites (i.e., amino acids,
glucose, lactate, ammonium) were calculated from measured time-
series extracellular metabolomics by using the following equations
(Eqs. 2–4).

= XdX/ dt μ (2)

=P dt q Xd / p (3)

= −N dt q Xd / N (4)

where X , P, N , t are the viable cell density (VCD), product (e.g., lactate,
ammonium, mAb, or other by-products in the supernatant), nutrient
concentration (e.g., glucose, glutamate, and other amino acids) and
time, respectively. The μ, qp, and qN represent the specific cell growth
rate, secretion, and uptake rate of the extracellular metabolites, re-
spectively. These specific metabolic rates were served as experimental
metabolic constraints in genome-scale models. The metabolic models
and the RNA-Seq data used in this study can be available by contacting
the authors.

3. Results and discussion

3.1. Cell growth and mAb production

To ensure that cell line is the only factor on altering cellular me-
tabolism, we cultured two cell lines HP and LP in batch shake flasks
using the same media and culture conditions. Cell growth and mAb
production profiles are shown in Fig. 1A and B, respectively. As seen,
these two cell cultures revealed similar cell growth but distinct titer
production profiles. The specific mAb productivity was calculated (as
described in Materials and methods) and shown in Fig. 1C and D, re-
spectively. Significant changes were observed along both the time
course and between the two cell lines. First, from a dynamic point of
view, the mAb productivity of HP had a substantial increase from the
early to the late exponential growth phase, whereas LP only had little
increase. Thus, there might be a metabolic transition correlated with
the dynamic production of mAb, which would be different in the high-
and low-producing cell cultures. Second, HP showed higher specific

productivity at any growth phase compared to LP, for example, the
productivity was 18-fold greater in HP compared to LP on day 6 (late
growth phase) (Fig. 1C and D). This result points out that there can be
another metabolic distinction just correlated between the two cell lines.
In the following analyses, we assigned the day 3 to be an early growth
stage and day 6 to be a late stage.

3.2. Overview of gene expression

We then analyzed the gene expression profiles of RNA-Seq data at
the early and late growth phases (as shown in Fig. 2A). Out of 26,520
genes found in the global RNA-Seq data, we focused on the metabolic
genes presented in the published genome-scale CHO model [23]. Our
analyses were carried out in two orthogonal ways (Fig. 2B and C). First,
we defined the metabolic difference responsible for mAb productivity
increase over the course of batch culture (Fig. 2B). The process was by
comparing the gene expression between early and late growth phases in
HP to identify the differentially regulated pathways, and the same
process was repeated in LP. Second, we investigated the metabolism
difference at each growth phase between HP and LP (Fig. 2C). This was
by comparing the gene expression between HP and LP at the early
growth phase to identify the significantly changed pathways, and the
same process was also performed for the late phase. Both aspects were
aimed to identify the metabolic features that potentially contribute to
high mAb productivity.

Fig. 3A shows the results of the Wilcoxon test. Any two states seeing
a significant difference in the transcriptional levels are marked with
asterisks. For the first goal, the Wilcoxon test revealed significant al-
teration at the transcriptomic level between early and late growth
phases (p-value< 0.001 in the comparison of Early_HP and Late_HP; p-
value< 0.01 in the comparison of Early_LP and Late_LP, as seen in
Fig. 3A). Fig. 3B shows the number of DEGs between every two states.
With a fold change> 1.3, a total of 114 DEGs across culture phases
could be identified in HP (1st bars in Fig. 3B) and 107 DEGs in LP
cultures (2nd bars in Fig. 3B). Taking the early phase as the control, 71
(60.7%) DEGs in HP cultures were up-regulated and 43 (39.3%) were
down-regulated. Similarly, 57 (53.3%) DEGs in LP cultures were up-
regulated and 50 (46.7%) were down-regulated. However, these num-
bers of DEGs that found to vary in the culture progression are less than
9% of the total 1273 metabolic genes in the genome-scale CHO-S me-
tabolic network, indicating that the overall transcriptome was stable
during the course of culture.

Next, we analyzed the gene expression difference between HP and
LP cultures. The Wilcoxon test results in Fig. 3A show that the HP and
LP cultures have no significant difference at the early growth phase (p-
value> 0.05 in the comparison of Early_HP and Early_LP, as seen in
Fig. 3A). Consistently seen with the number of DEGs (3rd bars in
Fig. 3B), at the early growth phase, only four genes were more ex-
pressed in HP compared to LP cultures and two genes were less ex-
pressed. In contrast, the Wilcoxon test indicated that genes were dis-
tinctively expressed at the late growth phase between HP and LP
cultures (p-value<0.001 in the comparison of Late_HP and Late_LP, as
seen in Fig. 3A). A total of forty-one metabolic genes were more ex-
pressed in HP, while only two genes were less expressed (4th bars in
Fig. 3B).

3.3. Metabolic pathway analysis between early and late growth phases

Here, the identified DEGs along the culture progression were further
interrogated by metabolic pathway analysis. The DEGs between early
and late growth phases were projected to the KEGG pathway database.
Fig. 4 gives an overview of the metabolic pathways identified as up- or
down-regulated at the late growth phase compared to the early phase
(up-regulated shown in Fig. 4A and B; down-regulated shown in Fig. 4C
and D). At first sight, the HP and LP cultures had many overlapped
pathways (in gray, Fig. 4). This majority of similarity could be for the
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general responses of cells in batch culture. To identify the pathways
that may be uniquely associated with mAb productivity increase, we
focused on the metabolic pathways that differed between HP and LP (in
bold, Fig. 4).

Two pathways of glycan related metabolism (glycosaminoglycan
biosynthesis, mucin type O-glycan biosynthesis) were up-regulated in
HP at the late growth phase (Fig. 4A). This observation may indicate
complex alternations in the normal physiological function of cells.
However, this pathway is not directly associated with cellular meta-
bolism that relates to cell growth and mAb production. The two path-
ways uniquely up-regulated in LP are alanine, aspartate and glutamate
metabolism; and glycine, serine and threonine metabolism (Fig. 4B).
The DEGs associated with this pathway are Gamt, Sdsl, Sds, Gpt2, Asns.
To closely examine the expression of these genes, we plotted their ex-
pression data in Fig. 5. It turned out, these genes also underwent sig-
nificant alteration during the progression of high-producing cells, ex-
cept for the gene Sdsl. Whereas, the fold change of several genes in the
high-producing cell culture was less than the 1.3, which was the cut-off

threshold used for the DEGs identification. This explained why not all
these genes were initially recognized as DEGs in the high-producing cell
culture. In the meantime, it points out that these pathways were not the
most distinct pathways that could be found between HP and LP cul-
tures.

The same analysis was repeated on down-regulated pathways. It
was observed that pentose phosphate pathway (PPP), citrate cycle (TCA
cycle), cysteine and methionine metabolism were uniquely down-
regulated in LP, suggesting that these pathways may be associated with
the lower productivity increase in LP.

3.4. Metabolic pathway analysis between high and low producers

Metabolic pathway analysis was then carried out to distinguish
activities altered between HP and LP cultures. Interestingly, the early
growth phase witnessed little gene expression difference between HP
and LP. Only six DEGs were found in total between the two cultures. In
contrast, a significant change was observed at the late growth phase.

Fig. 1. Cell culture experimental data in HP (high producer) and LP (low producer) cultures. (A) Time-series viable cell density. (B) Time-series mAb production. (C)
Specific mAb productivity in HP cultures. (D) Specific mAb productivity in LP cultures. The titer of LP at day 3 was close to zero, so the bar was not shown. The
specific mAb productivity of the early phase in HP was set as 100% to normalize productivity in figure C&D.

Fig. 2. Schematic overview of the comparative transcriptomics analysis between HP and LP.
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The pathways expressed significantly higher in HP cultures are listed in
Fig. 6, including various lipid-related metabolism, energy-related me-
tabolism, protein export, biosynthesis of amino acids, PPP, and amino
sugar and nucleotide sugar metabolism.

Previous work has found that early cell culture has higher glycolytic
activity in order to generate the required energy for cell growth [48].
However, during the late growth phase or mAb production phase, the
energy is primarily provided through a stage called mitochondrial
oxidative phosphorylation, which is associated with elevated PPP ac-
tivity [49]. It is also conceivable that high productive cell lines enhance
their mitochondrial function (TCA cycle) and up-regulate oxidative
phosphorylation to ensure the increased generation of adenosine tri-
phosphate (ATP) required for mAb production and redox needs [50].
The cellular activities found in our study for HP cultures at the late
stage are consistent with these previous studies, suggesting that oxi-
dative phosphorylation may play a vital role in mAb production.

PPP is a major source for generating NADPH which is the main
intracellular reductant that can counteract oxidative damage. PPP also
plays a vital role in the redox regulation, lipid synthesis, and re-
generation of reduced glutathione [51,52]. In this study, PPP is sig-
nificantly enriched at the late stage in HP deduced from gene expres-
sion analysis, which implies that PPP may play a critical role in the
cellular redox state for mAb production.

3.5. Flux balance analysis with a genome-scale CHO model

After the transcriptomics analysis, we performed a flux balance
analysis as another independent investigation between HP and LP.
Since very similar key pathways were identified in Section 3.3 and
Section 3.4, hence, we only discussed the flux analysis for Section 3.4 at
the late growth phase where the largest metabolic difference was ob-
served in terms of mAb productivity between HP and LP. Glycolysis,
PPP, pyruvate catabolism, TCA cycle are the central metabolism for cell

Fig. 3. Gene expression analysis comparing early and late growth phases and
between HP and LP cultures. (A) Wilcoxon test. In boxplots, the centerline in-
dicates the median, the box limits indicate the upper and lower quartiles, and
the whiskers extend from the minimum to the maximum values. Statistical
significance is indicated by asterisks according to the calculated p-values (*p-
value< 0.05, **p-value<0.01, ***p-value< 0.001). (B) The number of dif-
ferentially expressed genes.

Fig. 4. Summary of the main results for the KEGG pathway analysis of transcriptomics. Pathways are up-regulated at the late growth phase compared to the early
phase in HP (A) and LP (B); pathways are down-regulated at the late growth phase compared to the early phase in HP (C) and LP (D). All the pathways shown in the
figure have achieved a significance value of non-log scale p-value< 0.05 (equivalent to a score higher than 1.3 on the x-axis).
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growth and mAb production (as shown in Fig. 7A). For each reaction,
only the gene that differentially expressed between HP and LP (first-
choice) or with the highest expression level (second-choice) at the late
growth phase was shown in the figure at the side of metabolic reaction.
A genome-scale metabolic model was applied to obtain the fluxes of
these reactions, while the extracellular metabolite uptake and excretion
rates calculated from experimental measurements were used as con-
straints in the model. Metabolic fluxes of these reactions calculated for
the late exponential growth phase in HP and LP are shown in Fig. 7B.
Below, the transcriptomics and metabolic fluxes indications of these
reactions are discussed separately for the glycolysis and PPP pathways
(Section 3.5.1) and the TCA cycle (Section 3.5.2). For convenience, in
this article, the reactions and associated genes shared the same names
but only the genes were presented in italic type.

3.5.1. Fluxes in glycolysis and pentose phosphate pathway
According to the transcriptomics analysis, PPP and TCA cycle are

the two most significantly up-regulated central carbon metabolism at
the late growth phase of HP. Hexokinase (HK) catalyzes the first step of
glucose metabolism, phosphorylating glucose to glucose 6-phosphate
(Glucose-6P). Both the HK gene expression and the flux of the HK re-
action revealed that there was no big difference in HK activity between
the two cultures. In the reactions of glyceraldehyde 3 phosphate de-
hydrogenase (GAPD) and phosphoglycerate kinase (PGK) in glycolysis,
the predicted fluxes between HP and LP cultures are consistent with
gene expression. It was found that fructose 6-phosphate (Fructose-6P)

was converted to glucose-6P via the reaction of GPI according to pre-
dicted flux distribution in HP cultures, implying that PPP may be op-
erating in a cyclic mode. While the predicted flux in the reaction of GPI
was zero in LP culture. This is also possible as seen in predicted flux
distribution in Fig. 7 that almost all of the transported glucose was
consumed by diverting to PPP during the late exponential growth phase
in LP cultures, and then went back to glycolysis through non-oxidative
PPP (e.g., TKT (transketolase)). Overall, our flux distribution results are
consistent with other studies where similar results were observed
during the late growth stage [48].

An important gene in the PPP is glucose-6-phosphate dehy-
drogenase (G6pd) which coding the reaction of G6PD in mammalian
cells to maintain the NADPH level. Given that G6PD is used in the first
step of the PPP and always rate-limiting, there has been genetic en-
gineering that overexpressed the genes in G6PD to improve protein
production [53]. While our study did not observe a big difference in the
gene expression of G6pd during the late growth phase between HP and
LP cultures, instead, we found a significantly higher expression level in
HP cultures on downstream genes in the PPP, including Prps1 and
Prps2. These genes are responsible to convert ribose-5-phosphate (R5P)
into 5-phosphoribosyl-1-pyrophosphate (PRPP), which are probably a
driving force for the higher activity of oxidative PPP in HP than LP
cultures as observed in predicted flux distribution in Fig. 7.

3.5.2. Fluxes in the TCA cycle
It has been known that the majority of glycolytic-derived pyruvate

was processed through the TCA cycle for energy generation when cells
are not producing a large amount of lactate (e.g., during the late ex-
ponential growth phase or stationary phase of cell culture) [54]. The
pyruvate dehydrogenase (PDH) plays a key role in linking glycolysis to
the TCA cycle by converting pyruvate to acetyl-CoA. Our results showed
that higher activity of PDH at both flux and gene expression levels in HP
cultures. It is interesting to note that the activity of the TCA cycle is
higher only for the lower part of the TCA cycle in HP, such as ox-
oglutarate dehydrogenase (ODH), succinyl-CoA synthetase (SUCOAS),
succinate dehydrogenase (SDH), and malate dehydrogenase (MDH)). It
was observed on both the gene expression and the predicted fluxes in
HP cultures as seen in Fig. 7B. While upper TCA cycle appeared to have
little difference in terms of both the predicted fluxes and gene expres-
sion between HP and LP cultures, such as citrate synthase (CS) and
isocitrate dehydrogenase (IDH) as seen in Fig. 7B.

Among them, the most outstanding gene in the TCA cycle was
SUCOAS, which catalyzes the reversible synthesis of succinate and ATP
(Fig. 7B). Both gene expression and flux levels were higher in HP cul-
tures, suggesting that the reaction of SUCOAS may be a metabolic
bottleneck of the TCA cycle for mAb production. From literature, it has

Fig. 5. Gene expression levels of identified DEGs involved in alanine, aspartate and glutamate metabolism, glycine, serine and threonine metabolism in HP and LP.
Statistical significance is indicated by asterisks (* p-value<0.05, ** p-value< 0.01, *** p-value< 0.001).

Fig. 6. Up-regulated pathways at the late growth phase in HP compared to LP.
All the pathways shown in the figure have achieved a significance value of non-
log scale p-value< 0.05 (equivalent to a score greater than 1.3 on the x-axis).
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been reported that transient silencing of gene Sucla2 which regulates
SUCOAS would inhibit cell growth and decreased ATP production [55].

3.6. Summarization for the combined transcriptomics and flux analysis

In this study, we explored the metabolic differences between low-
and high-producing cell cultures to identify potential targets for cell
line development and bioprocess optimization. To this end, we com-
bined transcriptomics and flux analysis through genome-scale CHO
models. No significant phenotypic differences in viable cell density and
viability were shown between the two cultures investigated. As a result
of this, it allows us to focus on investigating the metabolic alternations
related to productivity rather than considering the confounding effects
of cell growth and its broad cellular consequences.

Firstly, it was found that both HP and LP showed a consistently

elevated activity of mAb production over cell culture. Our primary in-
terest here was to determine how cellular metabolism adapts to batch
culture conditions and accordingly to identify the metabolic differences
between HP and LP that may result in productivity discrepancy. Thus,
the comparison of the transcriptome between early (with lower mAb
productivity) and late (with higher mAb productivity) growth phases
provides a view of metabolic responses to dynamic cell culture condi-
tions. We observed that the vast majority of pathways gave the same
responses to HP and LP favors common responses that may be asso-
ciated with growth arrest and nutrient availability in the batch culture
conditions. We also found that PPP, TCA cycle, cysteine and methionine
metabolism were only down-regulated in LP cultures, suggesting that
these pathways may result in the different mAb production between HP
and LP. Secondly, only negligible changes occur in metabolic pathways
at the early growth phase between HP and LP, whereas significant
changes were found at the late growth phase. The most significantly up-
regulated pathways during the late growth phase were related to oxi-
dative phosphorylation, TCA cycle, and PPP. Taking all these pathway
differences, with our observation, it was suggested that HP is more
energetically efficient by directing glycolytic flux to the TCA cycle in
conjunction with oxidative PPP to generate NADPH, which is consistent
with the understandings from a previous study [50].

Since transcriptomics only infers metabolic pathway alternations
from changes in gene expression, it can be misleading on reaction ac-
tivity because of the possible complex post-transcriptional and meta-
bolic regulatory [50]. Therefore, we conducted flux analysis using a
genome-scale CHO model, with a focus on the metabolic reactions
found in the transcriptomics analysis. Our analysis showed a positive
correlation between predicted flux rates and transcriptional changes in
many reactions. In contrast to this, several reactions revealed dis-
crepancies between changes in gene expression and predicted fluxes,
such as the reactions of G6PD, GPI, and TKT. These weak correlations
indicate alternative regulatory mechanisms, such as post-transcrip-
tional, post-translational, or allosteric control, which may require a
more in-depth investigation for fundamental understanding. As meta-
bolites represent the final outcome of combined gene expression and
enzyme activities in the cells, the metabolome is considered as the ul-
timate read-out of cellular phenotype [56]. In this regard, the flux
analysis generated from genome-scale models can also be integrated
with intracellular metabolomics in the future, which allows to have a
comprehensive exploration of the complex cell biology. The study
performed by Yusufi et al. applied the metabolomics profiling to vali-
date the predictions of genome-scale metabolic modeling, and revealed
an increased level of metabolites that were involved in the energy-re-
lated metabolism and oxidative phosphorylation in protein-producing
CHO cells [8].

Then, according to a comprehensive analysis of gene expression and
flux distribution, we found several reactions and corresponding genes
that can be of interest for future engineering targets. In the PPP, the
fluxes predicted by the genome-scale model are higher in HP than LP
during the late growth phase. But only the gene PRPPS shows higher
expression in HP. One potential explanation for the discrepancy in gene
expression levels and flux values for G6PD and TKT could involve post-
transcriptional regulation and/or metabolic regulation; in contrast, the
transcriptional regulation of gene PRPPS plays a leading role in reaction
activity of PRPP synthesis. The metabolite PRPP is an important in-
termediate in cellular physiology. For example, it is utilized in the
biosynthesis of nucleotides that are essential for building DNA and
RNA; and it also served as a substrate for NAD generation which is an
important redox factor [57,58]. Taken together, it is suggested that the
reaction of PRPPS can be a very promising target to increase mAb
productivity. Another interesting reaction is PDH where pyruvate is
converted to acetyl-CoA, an important intermediate in the TCA cycle for
energy production and lipid synthesis. Both gene expression and flux
analyses pointed to a higher activity of PDH in HP, suggesting that the
gene (e.g., the gene Pdhb which is one of DEGs in this study) in PDH can

Fig. 7. Visualization of the gene expression levels and predicted reaction rates
in selected key pathways (glycolysis, pentose phosphate pathway, and TCA
cycle). The data including the gene expression levels and predicted reaction
rates are normalized to the highest values for each reaction. The reactions
regulated by DEGs are indicated in red. Statistical significance is indicated by
asterisks (* p-value< 0.05, ** p-value<0.01, *** p-value<0.001) (For in-
terpretation of the references to colour in this figure legend, the reader is re-
ferred to the web version of this article).
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be used as a marker for HP. In another recently published study, PDH
was also recommended as markers for HPs and the enzyme to be me-
tabolic targets as well [59]. After the identification of engineering
targets, future work is to employ efficient genetic engineering tools to
increase the activity of particular pathways. Taking the reactions of
PRPPS and PDH as examples, we can focus on three candidate genes
which have been identified as DEGs in transcriptomics analysis: genes
Prps1 (gene ID 100759532) and Prps2 (Gene ID 100767893) from the
reaction of PRPPS; gene Pdhb (gene ID 100774878) from the reaction of
PDH. Genetic engineering strategies have widely applied in CHO cells,
such as the successful applications of advanced gene editing CRISPR-
Cas9 and transient expression techniques to improve cell growth or
protein production in recent studies [60–62]. In each particular appli-
cation of gene overexpression, either for a single gene or multiple
genes, the effects on cell density, viability, and protein titer should be
carefully assessed.

We also found that not all the reactions have higher activity in HP
than LP in both gene expression and flux levels. It is interesting to note
that the reactions of ODH and SUCOAS showed consistent trends be-
tween gene expression and flux prediction. The associated genes reg-
ulating ODH and SUCOAS are significantly expressed higher in HP
cultures (the p-value was<0.001 for gene ODH in comparison; the
gene SUCOAS was identified as DEGs). More importantly, these two
reactions are connected with amino acids metabolism, where a-ke-
toglutarate and succinyl-CoA are two crucial intermediates closely
linked to amino acids [63]. One hypothesis could be that the HP cells
have a higher ability to utilize the carbon backbones through the cat-
abolism of amino acids for the formation of TCA cycle intermediates,
which ultimately are to be used for energy generation. In a separate
study, four amino acids at higher concentrations which are closely
correlated to TCA cycle intermediates were supplemented in the feed
and resulted in the higher activity of the TCA cycle according to me-
tabolic pathway analysis, and increased mAb production compared to
the control. This result was also confirmed by the measured oxygen
uptake rate (OUR) (Huang et al., under review). However, it should also
be noted that when the amino acids are supplied in excess, it will lead
to the formation of inhibitory intermediates and harm mAb production
[64,65]. Taken together, these two reactions can be potentially used as
targets for media optimization through the modification of the amino
acids associated with these two reactions. On the other hand, feeding
TCA cycle intermediates such as a-ketoglutarate and succinate in the
late exponential phase would be another potential strategy to improve
the product titer. Coincidentally, a recent study conducted by Zhang
et al. has demonstrated that feeding a-ketoglutarate, malate, and suc-
cinate in the stationary phase significantly improved cell specific pro-
ductivity and antibody titer in CHO cells [66]. Additionally, the genes
involved in ODH and SUCOAS can also be used as genetic targets for
cell line development.

4. Conclusions

In this study, we aimed at using an integrated analysis to understand
the intracellular metabolism change associated with mAb productivity.
In our strategy, we started with using gene expression information to
explore the metabolic alternations in response to batch conditions and
different cell lines. The two-step comparison analysis orthogonally
looking at the difference in the time course of mAb-producing culture
process and the difference between high- and low- producing cells
consistently revealed a series of high activity in metabolic pathways for
high mAb production. We also integrated flux balance analysis in our
approach to address the limitation in looking only at transcriptional
alteration, for comparison with the metabolic changes in the pathways
identified by transcriptomics analysis.

As our results are consistent with existing literature, for the first
time, these key pathways are identified to be characteristics of high
mAb production, not only for high-producing cell lines but also for a

dynamic phenomenon in mAb-producing cell culture. And more im-
portantly, these results are verified at both gene expression and meta-
bolic flux level. After all, our study shows successful employment of
multi-analysis combined strategy to comprehensively elucidate the
metabolism in cell culture. Based on that, potential metabolic targets
can be identified for future engineering considerations.
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