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Abstract: Chinese hamster ovary (CHO) cells are the most commonly used cell lines in
biopharmaceutical manufacturing. Genome-scale metabolic models have become a valuable tool
to study cellular metabolism. Despite the presence of reference global genome-scale CHO model,
context-specific metabolic models may still be required for specific cell lines (for example, CHO-K1,
CHO-S, and CHO-DG44), and for specific process conditions. Many integration algorithms have been
available to reconstruct specific genome-scale models. These methods are mainly based on integrating
omics data (i.e., transcriptomics, proteomics, and metabolomics) into reference genome-scale models.
In the present study, we aimed to investigate the impact of time points of transcriptomics integration
on the genome-scale CHO model by assessing the prediction of growth rates with each reconstructed
model. We also evaluated the feasibility of applying extracted models to different cell lines (generated
from the same parental cell line). Our findings illustrate that gene expression at various stages of
culture slightly impacts the reconstructed models. However, the prediction capability is robust
enough on cell growth prediction not only across different growth phases but also in expansion to
other cell lines.

Keywords: genome-scale metabolic model; time-series transcriptomics; omics data integration;
CHO cell

1. Introduction

Genome-scale metabolic models are valuable tools to describe cellular metabolism that link
metabolic genes, proteins, reactions, and metabolites [1]. One widely used computational approach for
genome-scale models is flux balance analysis (FBA) that estimates an optimal intracellular metabolic
flux distribution, using an assumption of pseudo-steady state, the stoichiometry of metabolic network,
and a defined biological objective function [2–5]. In the mammalian cell culture process, genome-scale
metabolic models offer a mechanistic link between genotype and metabolic phenotype [4,6–8], for
example, in the investigation of the effects of gene expression change on metabolic pathways and
the corresponding cell growth, protein biosynthesis, or byproduct secretion [9]. With many other
examples, it has shown that the systems biology models can help obtain novel insights and guide
further experiments [6,10,11].

Several studies have indicated that not all genes or enzymes are active in a given cell line or
culture condition [6,12]. In this regard, it is required to create context-specific (i.e., cell line-specific or
condition-specific) models. Cell line- or culture condition-based omics data are integrated into existing
reference models to generate a subset of the genome-scale network that represents the metabolism
of specific cell lines or environmental conditions [13,14]. Several recent reviews and studies have
comprehensively compared and evaluated computational approaches that are available for omics data

Processes 2020, 8, 331; doi:10.3390/pr8030331 www.mdpi.com/journal/processes

http://www.mdpi.com/journal/processes
http://www.mdpi.com
http://dx.doi.org/10.3390/pr8030331
http://www.mdpi.com/journal/processes
https://www.mdpi.com/2227-9717/8/3/331?type=check_update&version=2


Processes 2020, 8, 331 2 of 14

integration to reconstruct models [9,15,16]. Among those, GIMME (Gene Inactivity Moderated by
Metabolism and Expression) is a widely used tool that can perform both model reconstruction and flux
prediction based on gene expression data [17].

Chinese hamster ovary (CHO) cells are the predominant mammalian cell type used for the
production of monoclonal antibody (mAb) [18–20]. A consensus genome-scale model, iCHO1766, was
reconstructed for CHO cells in 2016 [7]. This model contains 6663 metabolic reactions, 4456 metabolites,
and 1766 metabolic genes. Cell line-specific genome-scale metabolic models (e.g., CHO-K1, CHO-S,
and CHO-DG44) were subsequently extracted from iCHO1766 [6,7]. In the GIMME approach, the
active metabolic genes or associated reactions are identified based on their absolute expression value
and a user-defined threshold. However, only the gene expression level at a single time point (under
steady-state) is considered for integration. This way has ignored the fact of dynamic systems in cell
culture processes. In batch or fed-batch cultures, CHO cells are undergoing culture condition changes,
including environmental variation (e.g., pH) and altered substrate availability [21]. To adapt to a
changing environment, it is expected that cells can undergo gene expression changes [22]. Therefore,
it raises the question of whether the varied gene expression in the cell culture will influence the
context-specific metabolic model reconstruction, which in turn will affect the model application in
simulating cell physiology and identifying engineering targets to enhance production. Another concern
is the feasibility of applying reconstructed context-specific models to different cell lines (generated
from the same parental cell line), which may be of great interest to industrial scientists who work on
the cell line development.

There has been little attention given to the above questions. For this purpose, we performed a
series of systematic assessment in this study using three mAb-producing cell lines to understand the
effect of time-series transcriptomic data on the robustness of genome-scale models. First, we analyzed
the overall change in the dynamic cell culture transcriptome. Genome-scale models were then extracted
by integrating transcriptomic data from each culture stage into a reference model. Next, we compared
the extracted models between different growth phases for each cell line, in terms of predictive accuracy
and network content. Finally, we investigated the feasibility of models derived from one cell line data
for the prediction in other cell lines.

2. Materials and Methods

2.1. Experimental Data

Three glutamine synthetase (GS) CHO cell lines producing different mAbs were used in this study
and respectively termed CHO-A (to produce the mAbs of Adalimumab), CHO-B (Bevacizumab), and
CHO-R (Rituximab). These three cell lines were derived from the same parental cell line. The detailed
information on cell culture experiments can be found in the previous publication [23]. Cells were
cultured in shake flasks for seven days with an inoculation density of 2 × 105 cells/mL and a working
volume of 50 mL. A commercial media CD FortiCHO (ThermoFisher Scientific, Waltham, MA, USA)
was used for these three cell lines. For each cell line, triplicate flasks were conducted in batch mode.
Time-series gene expression profiles were determined daily using RNA-sequencing (RNA-Seq) from
day 3 to day 6 [23]. A total of four data points of gene expression were collected. Metabolic genes in
the CHO model were selected from BiGG database [24] or published genome-scale CHO model [7].
More detailed information about the processing of RNA-Seq can be found in a previously published
manuscript [23].

Amino acid concentrations were measured using a HPLC system (Shimadzu, Kyoto, Japan)
connected with a triple quadrupole mass spectrometer (Shimadzu, Kyoto, Japan) operated in positive
electrospray ionization mode. A column Scherzo SM-C18 (3 µm, 100 × 3 mm, IMTAKT) was used for
the component separation. Amino acid standard mixtures were separated using an Intrada Amino Acid
column (100 × 3 mm, 3 µm, IMTAKT, Japan). Mobile phase A (aqueous) consisted of 0.3% v/v formic
acid in acetonitrile; mobile phase B (organic) consisted of 20% v/v acetonitrile in 100 mM ammonium
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format. The chromatographic separation was accomplished by different gradients of mobile A and
mobile B phase as follows: the mobile phase was started at 20% B for 4 min, increased from 20% B
to 100% B with a linear gradient for 10 min, then maintained at 100% B for 2 min. The mobile phase
was returned to 20% B and continued for 2 min. LC conditions included column temperature at 37 ◦C,
injection volume of 10 µL, and mobile phase flow rate of 0.6 mL/min. More detailed information about
the quantification of amino acids by LC-MS/MS can be found in reference [25].

2.2. Time-Series Transcriptomics and Extracellular Metabolomics Data Analysis

The time-series gene expression was analyzed via ANOVA (analysis of variance) in MATLAB
(R2016a, MathWorks, Natick, MA, USA) to determine whether the gene expression during cell culture
had significant change among different time points. A p-value < 0.001 was considered to be statistically
significant in this work.

The measured time-series extracellular metabolomics was used to calculate specific uptake or
secretion rates by using the following equations (Equations (1)–(3)).

dX
dt

= µX, (1)

dP
dt

= qpX, (2)

dN
dt

= − qNX, (3)

where X, P, N, t are the viable cell density (VCD), product (e.g., lactate, NH4, mAb or other by-products
in the supernatant), nutrient concentration (e.g., glucose, glutamine, glutamate, and other amino acids)
and time, respectively. The µ, qp, qN represent the specific cell growth rate, secretion, and uptake rate
of the extracellular metabolites, respectively. The specific mAb productivity of phase I in CHO-A was
set as 100% to normalize productivity within this study.

2.3. Stoichiometric Models and Flux Balance Analysis

The genome-scale metabolic model can be represented by a stoichiometric matrix (S) of size m× n
(where m and n mean the number of metabolites and reactions, respectively) and a vector of reaction
fluxes (v) [26,27]. Under the assumption of a quasi-steady state, the mass balance equations are given
by S ×V = 0 [3]. Flux balance analysis was used to estimate the intracellular metabolic fluxes by
the optimization of a defined objective function using linear programming. During the exponential
growth phase, the optimal flux distribution was obtained using the objective function of maximizing
biomass [7]. The calculated uptake and secretion rates of metabolites (as described in Section 2.2) were
served as experimental metabolic constraints. The Constraint-Based Reconstruction and Analysis
(COBRA) toolbox was used for FBA analysis in this study [28,29]. Gurobi solver was selected to solve
linear programming optimization problems [30].

2.4. Model Extraction

We used the GIMME method [17] to reconstruct cell line- or condition-specific models in this
work. This method uses linear programming and metabolic objective functions (e.g., cell growth) to
create context-specific reconstruction while minimizing the inconsistency between fluxes and gene
expression data [17,31]. First, a user-defined threshold of gene expression (e.g., a single threshold value
of 1) was utilized to determine which gene is considered active or not. In this study, the threshold was
set to 1, which means that genes with a normalized TPM (transcripts per million) value greater than 1
were considered as active. Then, the non-active reactions were removed from the reference model
and the new context-specific model was created while optimizing the objective function. The GIMME
algorithm was complemented in COBRA in MATLAB (Matlab 2016a; Mathworks, Natick, MA, USA).



Processes 2020, 8, 331 4 of 14

The constraints applied to the models and the RNA-Seq data used in this study can be available by
contacting authors.

3. Results

3.1. CHO Cell Cultures and Dynamics

The daily measured viable cell density, lactate, and ammonium concentrations are shown in
Figure 1. Other metabolite data are not shown but their specific rates were calculated and shown
in Section 3.3. In this study, the genome-scale modeling focuses on the exponential growth phase.
According to the cell growth and metabolic profiles (Figure 1A–C), the exponential phase can be
divided into four sub-phases, including phase I (day 3), phase II (day 4), phase III (day 5) and phase
IV (day 6). The specific rates of cell growth and mAb production are shown in Figure 1D,E. Clearly,
variation was seen in these activities across the four phases.
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Figure 1. Cell culture data. (A) Time-series viable cell density. (B) Time-series lactate concentration.
(C) Time-series ammonium concentration. (D) Dynamic specific cell growth. (E) Dynamic specific
mAb productivity. The specific mAb productivity of phase I in CHO-A was set as 100% to normalize
productivity within this study.

3.2. Time-Series Transcriptomics

Here, we first analyzed the time-series transcriptomics and determined whether a significant
change has occurred among different time points. In this experiment, gene expression was analyzed
for cells by extracting total RNA and measuring transcript reads using RNA-Seq. Cell samples were
collected at 67 h (day 3), 91 h (day 4), 115 h (day 5), and 127 h (day 6), respectively. Out of 26520 genes in
global RNA-Seq data, we focused on the metabolic genes associated with the global CHO genome-scale
model. As a result, 1728 genes in our datasets can be mapped to the global CHO genome-scale
model [7]. With ANOVA analysis, CHO-A, CHO-B, and CHO-R cultures respectively had 352, 214,
and 244 genes that were significantly changed among the four culture phases (p-value < 0.001). This
represents a portion of genes that are 20.4% (352/1728 genes) in CHO-A, 12.4% (214/1728 genes) in
CHO-B, and 14.1% (244/1728 genes) in CHO-R, respectively. As an example, the distribution of all
metabolic genes in CHO-A over their expression level is shown (in yellow) in Figure 2. The dynamically
varying genes are shown in dark blue, and it was seen that a significant portion of these genes were
highly expressed. Given the dynamic variation seen at transcriptome during the exponential growth
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phase, it is necessary for us to investigate the effect of time-series transcriptomics on the context-specific
genome-scale model reconstruction.
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Figure 2. Time-series gene expression under different phases in the CHO-A cell line. The genes of a
p-value < 0.001 were considered to be statistically significant.

3.3. Extracellular Metabolomics and Metabolite Uptake and Secretion Rates

The specific rates of metabolite uptake and secretion were calculated using daily measured
extracellular metabolomics. The calculated rates at each growth phase for all the three cell lines are
shown in Figure 3. As seen in each cell line, the specific rates of all amino acids tended to decline
from phase I (day 3) to phase IV (day 6), a phenomenon concurrent with the reduced cell growth
over time. Alanine and glutamine were exceptional. Specifically, alanine was first produced before
phase III and then reduced. This trend could be due to the production of alanine from pyruvate before
phase III and later in phase IV alanine was converted back to pyruvate to maintain the flow to the
TCA cycle [32]. It has been known that glutamine is important to generate TCA cycle intermediates
such as α-ketoglutarate [33]. In the culture for GS-CHO cells, glutamine was not supplemented
and was only intracellularly synthesized by GS activity. In this work, glutamine was shifted from
production to consumption, indicating that at the early phase of cell culture, glutamate along with
ammonium was utilized to produce glutamine. Taken together, these calculated metabolite uptakes
and secretion rates revealed metabolic differences among the four culture phases, in line with the
time-series transcriptomic difference seen in Section 3.2. All these calculated specific rates at each
phase along with transcriptome were then used with the GIMME method to extract context-specific
models from the reference CHO model.
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Figure 3. Experimentally measured specific uptake and secretion rates among different culture phases
in CHO-A (A), CHO-B (B), and CHO-R (C).

3.4. Model Extraction for Each Cell Line

The reconstruction of context-specific models for each cell line followed the steps as described in
Figure 4. The published global CHO genome-scale model was served as the reference model for all
the reconstructions [7]. Each new model was subtracted from the reference model by the integration
algorithm GIMME and based on the specific-stage omics data. The experimentally measured specific
metabolic rates (as shown in Figure 3) were used as model constraints while maximizing cell growth
was defined as the objective function. For all the reconstructed models, the functions of biomass and
mAb biosynthesis will be maintained by force all the time.
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Figure 4. The framework to formulate different genome-scale metabolic models by the integration of
available omics data and using computational algorithm GIMME.

As a result, the context-specific model for each growth phase was extracted from the reference
model. The ideal metabolic model should be robust and able to predict cell growth for all culture
phases. It also means that a model should not be too sensitive to experimental constraints (derived
from extracellular metabolomics) under different conditions; otherwise, the resulting models are likely
to be overfitting to the provided experimental constraints. To demonstrate the robustness of the model
extracted by the integration of transcriptomics at each phase, we tested each single-phase model to
predict cell growth for the whole culture not exclusively to its own phase. The strategy of analysis
is presented at the top part in Figure 5. For example, the extracted model with gene expression and
experimental constraints from phase I in CHO-A was applied to predict the cell growth from phase
I to phase IV in CHO-A (as described in Figure 5). The tests were done with each of the CHO-A,
CHO-B, and CHO-R. The results of model predictions are shown in Figure 6. It turned out that,
although the number of metabolic genes, metabolites, and reactions was varied by integrating the gene
expression at different phases (Figure 6A), the model prediction results were similar and comparable
with experimental values using any model (Figure 6B–D). Thus, the prediction performance of cell
growth was not significantly perturbed by the gene dynamics. It indicates that the extracted model
built from any growth phase could provide an equal opportunity to interpret the phenotype within the
same cell line.
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3.5. Comparison of the Network Content Among Extracted Models

To further illustrate the network content, we applied the Venn diagram analysis to compare the
models extracted at different growth phases. Figure 7 reveals the intersection of genes, reactions, and
metabolites from each extracted model. In CHO-A, the intersection includes 1178 genes (99% of total
genes in all four CHO-A models), 3267 reactions (98.8% of total reactions in all CHO-A models), and
1602 metabolites (99.7% of total metabolites in all CHO-A models). In CHO-B, this includes 1169
genes, 3273 reactions, 1602 metabolites; and in CHO-R, this includes 1153 genes, 3244 reactions, 1593
metabolites. It was thus shown that the network content of extracted models has high similarity. Here,
we call this shared metabolic content information to be the core network for each cell line.
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CHO-R cell lines in terms of genes (A–C), reactions (D–F) and metabolites (G–I).

3.6. Evaluate the Feasibility of Applying Extracted Models to Different Cell Lines

In the end, we evaluated the feasibility of extracted models for predicting cell growth for other cell
lines, as shown in the bottom part of Figure 5. As a result, the cell growth for CHO-A was predictable
using the extracted CHO-B (Figure 8A) or CHO-R models (Figure 8B). These predicted cell growth
results were all close to the experimental results. Similar results were also observed vice versa to the
other two cell lines, shown in Figure 8C,D for CHO-B and Figure 8D–F for CHO-R, respectively. The
results suggested that each extracted model had captured the core reactions linked to biomass and
antibody production and is robust to experimental constraints from multiple conditions in different
cell lines.
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Figure 8. Expand the application of extracted models built from time-series gene expression and
GIMME method to multiple cell lines. Apply the CHO-B models (A) and CHO-R models (B) on CHO-A
data; apply the CHO-R models (C) and CHO-A models (D) on CHO-B data; apply the CHO-A models
(E) and CHO-B models (F) on CHO-R data.

We also analyzed the core genes, metabolites, and reactions commonly accumulated among
different cell lines (CHO-A, CHO-B, and CHO-R) (data not shown). It was found that the CHO-A,
CHO-B, and CHO-R GIMME models have a commonality of 1152 genes, 3242 reactions, and 1592
metabolites, as shared by all the 12 models of 4 phases in 3 cell lines (as seen in Figure 6A). It was thus
revealed that all the extracted models integrated with time-series transcriptomics are closely related. It
is reasonable because these 3 cell lines are generated from the same parental cell line.

4. Discussion

In this study, we analyzed the dynamics of the time-series transcriptomic data in mAb-producing
cell cultures and built context-specific models of three different CHO cell lines by integrating omics
data at specific growth phases. Our findings illustrate that gene expression at various stages of culture
slightly impacts reconstructed models in terms of the number of metabolic genes, metabolites, and
reactions. However, the prediction capability of models extracted from any dynamic period of culture
is robust enough to predict the whole cell culture, not only across different growth phases but also in
expansion to other cell lines. Since the experimental data of three cell lines used in this study have
similar metabolic behavior and cell growth profile, it will be worthwhile to evaluate the extracted
models that developed for cell lines with different metabolic behaviors in the future.
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It is important to note that flux balance analysis utilizes three elements during computation
(Figure 4, left), including stoichiometry of metabolic network, model constraints (e.g., specific uptake
or secretion rates), and optimization principle (i.e., objective function) [10,34]. One of the most basic
model constraints imposed on genome-scale models is the nutrient availability and its uptake or
secretion rate. Some studies have demonstrated that constraint selection could strongly influence the
ability of growth rate prediction [35]. Therefore, accurate measurements of extracellular metabolomics
are another critical requirement other than the reconstruction of the metabolic network, to predict
accurate cell growth and the intracellular flux distributions. Given that the genome-scale models are
inherently highly underdetermined (e.g., as seen in Figure 6A, the number of reactions is much larger
than that of metabolites), the adequacy of metabolomic dataset constraining the derived models may
be a concern for model performance. The study of model constraints is still an important subject, as
there is no explicit understanding of how many constraints must be required for genome-scale models.
Currently, specific uptake or secretion rates of amino acids, glucose, and glutamate (as introduced in
Section 2.2) are the most common constraints, since the quantification of these metabolites is relatively
easy to perform [6,7]. This study has thus applied these rates as the metabolic constraints under each
phase. As seen in Figure 6, the results indicated that the divergent gene expression data only slightly
impact the reconstructed models. However, theoretically more biological- and data-derived constraints
could potentially contribute to more accurate model behaviors.

Other diverse constraints have also been applied to genome-scale models, beyond the metabolic
constraints of determined uptake and production rates. For example, the elemental balance of
carbon through intracellular reactions was introduced as additional constraints [36]. Sánchez et al.
(2017) incorporated enzymatic constraints in a yeast genome-scale metabolic model to ensure each
metabolic flux does not exceed its maximum capacity, significantly reducing flux variability of model
simulations [37]. Additionally, several attempts of applying the fluxes obtained from 13C metabolic
flux analysis to constrain the genome-scale model have been reported in other organisms [34].

To identify optimal solutions, FBA requires a biologically relevant objective function which
represents the metabolic goal of the organism [38], such as maximizing cell growth rate and minimizing
total flux. Although biomass production which describes the growth requirements of a cell is widely
used in the flux balance analysis [39], several previous studies have demonstrated that flux distributions
and predicted cell growth are sensitive to the changes in biomass composition [40,41]. It indicated
that accurate representation of biomass is another key to improve the predictive capability of flux
balance analysis. Zuñiga et al. (2018) took into account dynamic biomass compositions for various
culture conditions and stages, by applying dynamic biomass objective functions in a genome-scale
metabolic model of Chlorella vulgaris. The constraint model accurately predicted the growth rate
under heterotrophic and photoautotrophic conditions [42]. Another study conducted by Sarkar et
al. (2019) developed a diurnal flux balance model that enabled considerations of varying nature of
metabolism and different biomass composition under diurnal variations in phototrophic organisms [43].
Lachance et al. (2019) recently developed a software package to define a biomass objective function
from experimental data, for example, the multiple omic datasets. This data-driven approach can be
used to generate condition- and cell line-specific biomass objective functions and thus improving
the quality of new genome-scale models [44]. Schuetz et al. (2007) systematically evaluated various
objective functions for predicting intracellular fluxes and highlighted that objective functions were
likely experimental condition-dependent, and no single objective function can describe the flux states
under all conditions [45]. Indeed, in this work, we observed that the model prediction in phase I
and phase II is closer to experimental measurement, compared to phase III and phase IV (as seen
in Figures 6 and 8). This suggested that the single objective function of maximization cell growth
might not precisely represent the cellular state in these two late growth phases. In this regard, defining
objective functions is anticipated to be another critical topic to be studied in the field of FBA [38].

Transcriptomes are integrated for genome-scale model reconstruction by serving as a proxy for
the activity levels of relevant enzymes [26]. However, it is well understood that transcript levels often
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represent the levels of their corresponding proteins poorly [46]. Therefore, it is expected that proteomic
data integration can constrain genome-scale models more effectively. Several studies had integrated
multi-omics into genome-scale models to constrain the solution space [7,26].

Additionally, other features beyond metabolism, e.g., secretory pathway capacity, can influence
cell growth and recombinant protein productivity. In mammalian cells, more than 25% of synthesized
proteins (including enzymes and antibodies) are exported through the secretory pathway [47]. Therefore,
a detailed understanding of the secretory pathway is valuable to be taken into account of protein
productivity. Recently, Gutierrez et al. (2020) integrated the core secretory pathways with the
genome-scale metabolic model of CHO cells to capture the energetic and machinery demands of
secreted proteins [47]. In the future, this new reconstructed model can be used to interrogate cellular
activities more comprehensively and explore the critical features of productivity among different CHO
cell lines.

In summary, we believe the study of three mAb-producing cell lines presented here can provide
guidelines to other researchers on how to handle and incorporate transcriptomics data into genome-scale
models, especially for cell line-specific model extraction. Additionally, the extracted models can be
used to describe fluxes for physiological understanding, which in turn contribute to potential target
identification for cell line engineering or clone selection. On the other hand, a well-developed
model ultimately would be applied to predict the effect of perturbations of feeding strategies or
media composition on cell phenotype and served as an efficient tool to guide experimental work in
process development.
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