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Abstract

Trace metals are supplied to chemically‐defined media (CDM) for optimal Chinese

hamster ovary (CHO) cell culture performance during the production of monoclonal

antibodies and other therapeutic proteins. However, lot‐to‐lot and vendor‐to‐vendor
variability in raw materials consequently leads to an imbalance of trace metals that

are supplied to CDM. This imbalance can yield detrimental effects rooted in several

primary mechanisms and pathways including oxidative stress, apoptosis, lactate

accumulation, and unfavorable glycan synthesis. Recent research endeavors involve

supplying zinc, copper, and manganese to CDM in excess to further maximize culture

productivity and product quality. These treatments significantly impact critical quality

attributes and furthermore highlight the degree to which trace metal availability can

affect CHO cell culture performance. This review highlights the role of trace metal

variability, supplementation, and interplay on key cellular mechanisms responsible for

overall culture performance and the production and quality of therapeutic proteins.
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1 | INTRODUCTION

Since the 1980s, monoclonal antibodies (mAbs) have emerged as the

primary option for a variety of medical conditions including

rheumatoid arthritis, multiple sclerosis, and various cancers (Singh

et al., 2018). Global sales currently exceed $102 billion, accounting

for approximately 48% of biopharmaceutical sales worldwide—a

further indication of the success of mAb therapies (Dimitrov, 2012;

Ecker, Jones & Levine, 2015). Due to their engineering versatility as

well as their high productivity and robustness in cell culture, the

industry has adopted the Chinese hamster ovary (CHO) cell line and

its derivatives as the optimal hosts to produce these recombinant

protein therapies (Fischer, Handrick & Otte, 2015). To correspond

with the surge in mAb demand, primary research interests for

industry involve the enhancement of cell culture performance to

subsequently maximize the productivity of these therapeutic

proteins. These efforts, which most notably include optimizing

culture media feeding strategies, advanced clone selection methods,

and cell line engineering techniques, have allowed the industry to

achieve titers in excess of 10 g/L (Huang et al., 2010). CHO‐K1
genomic sequencing, as well as complementary proteomic and

transcriptomic analyses also provide substantial contributions to

future cell line engineering efforts (Baycin‐Hizal et al., 2012; Becker

et al., 2011; Xu et al., 2011).

Trace metals facilitate a diverse range of intra‐ and extracellular

functions in CHO cell culture necessary for optimal mAb productivity

and quality. “Among these include: lactate consumption and energy

metabolism, mAb productivity, and product quality (Kim & Park,

2016; Luo et al., 2012; Surve & Gadgil, 2015; Yuk et al., 2015).”

Traditionally, trace metals (e.g., iron, copper, zinc, manganese) and

other micronutrients were supplemented to culture media via 5–10%

fetal bovine serum, or some alternative animal‐based serum (Arigony
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et al., 2013). However, lot‐to‐lot variability, irreproducibility, and

concerns of microbial and viral contamination led to the advent of

chemically‐defined media (CDM), wherein prescribed concentrations

of trace metals and nutrients are supplied de novo (Yao & Asayama,

2017). Although CDM provides much greater protection from such

volatility, precise trace metal control, as well as comprehensive

media characterization, are still difficult to achieve (Galbraith, Bhatia,

Liu & Yoon, 2018; Lee, Christie, Liu & Yoon, 2012). And, while the

source of variability in raw materials may be sometimes difficult to

characterize, it is possible that any deficiency or overabundance of

trace metals may disrupt the complex system of interacting

mechanisms between metabolites.

Recent research endeavors involve further supplementing CHO

culture media with excess concentrations of trace metals to

subsequently maximize culture performance and productivity, as

well as stabilize favorable glycosylation patterns and flux distribu-

tions of metabolites (Hutter et al., 2017; B. G. Kim & Park, 2016;

Surve & Gadgil, 2015; Yuk et al., 2015). Conversely, any deficiency of

trace metals due to raw material variability may consequently lead to

undesired culture behavior. For example, zinc deficiency has long

been known to induce early death of mammalian cells (Clegg, Hanna,

Niles, Momma & Keen, 2005). Magnesium and calcium deficiency has

shown to induce early apoptosis through the stress response of

membrane scavenger receptor B1 in CHO cells (Feng, Guo, Gao & Li,

2011). Concerns of copper deficiency in relation to lactate

metabolism in CHO culture have also been addressed (Yuk et al.,

2015). Cell growth and mAb productivity have also shown to be

significantly impacted in multivariate models by slight trace metal

variability (Trunfio et al., 2017). These phenomena furthermore

highlight the importance of trace metal availability and concentration

repeatability in culture media.

Trace metal interplay in CDM can differ significantly than from

animal‐based sources, wherein trace elements are regulated by

naturally occurring proteins. Recent developments have furthered

the understanding of trace metal impact on performance and quality

of CHO cell processes cultured in CDM, both via supplementations

and deficiencies of trace metals. This review aims to highlight the

potential sources and consequences of metal variability in culture

media, and furthermore explore the specific mechanisms of action

responsible for shifts in mAb productivity and product quality via

trace metal induced‐metabolism. Here, we aim to provide an

insightful look into the role of trace metal interplay in several key

areas during the production of therapeutic proteins.

2 | VENDOR AND BATCH/LOT
VARIABILITY OF METAL CONTENT IN
CULTURE MEDIA

The trace metal content of culture media is subject to variation from

both vendors and batches/lots alike. Although the appropriate metal

content of media is predefined by each supplier, there still exist large

variations from one supplier to the next. For example, one Food and

Drug Administration survey of six commercially available CDMs for

CHO culture points to wide ranges of variance in several key trace

metals between vendors: iron (∼437 μM range), zinc and copper,

(∼8 μM range), and manganese (∼0.8 μM range; Mohammad et al.,

2019). Examinations into metal content within multiple lots of media

from the same supplier also show substantial variability. Analysis of

two lots of serum‐free CHO media from a leading commercial

supplier revealed significant differences in iron, copper, zinc,

selenium, and cobalt content (Keenan et al., 2018). An extension of

this analysis also revealed that copper fluctuations from various lots

of basal media were substantial enough to alter procaspase‐3
expression in Caco‐2 cells. A breakdown of copper content within

10 different lots of an undefined nutrient powder used in NS0 culture

for mAb production showed similar fluctuations, offering a key

avenue by which trace metals may be inadvertently introduced to

culture media (Mondia et al., 2015).

Oftentimes, plant‐based hydrolysates containing various vita-

mins, amino acids, and metabolites are provided to culture media to

enhance CHO culture performance (Chun, Kim, Lee & Chung, 2007;

Richardson et al., 2015). However, preparations of hydrolysates are

subject to large fluctuations of content within various lots, further

confounding efforts to characterize raw material and batch‐to‐batch
variability (Li, Vijayasankaran, Shen, Kiss & Amanullah, 2010;

Richardson et al., 2015; Trunfio et al., 2017). Hydrolysates commonly

include various iron salts, therefore, providing additional incidental

iron content to culture media (Kim & Lee, 2009). These incidental

iron salts may also yield additional metal impurities as well. For

example, ionic sulfates, which are provided to culture media to meet

the prescribed metal demand, also contain added metal contami-

nants. Trace iron and other elemental impurities can be introduced to

ionic sulfates at various stages of the refining process, including

metal recovery from leaching solutions as well as precipitation

operations (Crundwell, Moats, Ramachandran, Robinson & Daven-

port, 2011; Pakarinen & Paatero, 2011; Zhang & Cheng, 2007).

Consequently, assorted lots of metal salts that are introduced to

culture media are thus subject to these inconsistencies in trace metal

content.

To eliminate any viral contamination that may be present during

culture media preparations, batches of media and feeds often

undergo high‐temperature short‐time pasteurization (HTST). These

treatments elevate media and feed temperatures and pressures for

designated periods of time for effective viral inactivation (Kiss, 2011;

Weaver & Rosenthal, 2010). However, ionic salts can precipitate out

of solution during this process. For example, metal ions such as

calcium, magnesium, and iron can be supplemented to media by way

of various chlorides, sulfates, nitrates, and citrates. After dissociating

in solution, these ions can form small concentrations of ionic

phosphates (Cao, Stimpfl, Wen, Frank & Hunter, 2013). During HTST

treatments, elevated temperatures in excess of 100°C can drive

these ionic phosphates and other inorganic salts out of solution (Cao,

Loussaert & Wen, 2016; Cao et al., 2013; Floris, Curtin, Kaisermayer,

Lindeberg & Bones, 2018; Pohlscheidt et al., 2014). Consequently,

lot‐to‐lot variabilities of trace metal content are accentuated after
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the precipitating solids are removed from the solution. In addition,

precipitating salts have also shown to cause membrane fouling, which

can further lead to ineffective media processing and compromise

batch sterility as well (Cao et al., 2016; Pohlscheidt et al., 2014).

Trace metal leaching is an additional area of concern which can

potentially impact CHO cell culture performance and mAb quality.

Stainless steel and glass bioreactors can leach various amounts of

trace metals which can subsequently affect CHO culture perfor-

mance, as well as drug efficacy and stability. Several comprehensive

reviews cover the breadth of leaching in biopharmaceutical pro-

cesses through 2014 (Gilbert, Huang & Ryll, 2014; Kumar, Zhou &

Singh, 2014). However, recently, this scope of impact has included

mAb quality as well. Manganese leaching from glass bioreactors

anywhere from 50 to 200 nM has shown to increase percentages of

terminal galactosylation in mAbs (Williamson, Miller, McLaughlin,

Combs & Chu, 2018). Magnetic stir bars have also shown to leach

stainless steel‐based metals (e.g., iron, chromium, nickel, and

manganese) and significantly impact protein concentration and

aggregation (Thompson et al., 2017). Among the many financial

benefits of utilizing single‐use technology, the decreased risk of

microbial contamination is also advantageous. Yet even with single‐
use systems, metal leaching has shown to be a concern (Gao &

Allison, 2016). As this occurs during culturing operations, efforts to

control these trace metal variations CDM become more complex.

3 | IMPACT OF TRACE METALS AND
MEDIA ADDITIVES ON OXIDATIVE STRESS
IN CHO CULTURE

The interplay between trace metals and other media additives

introduces additional complexities with regard to oxidative stress.

Variations of light exposure to different lots of culture media have

shown to induce photodegradation of essential B vitamins, leading to

stressed mammalian cell cultures and amino acid oxidation (McE-

learney, Ali, Gilbert, Kshirsagar & Zang, 2016; Schnellbaecher,

Binder, Bellmaine & Zimmer, 2019; Zang et al., 2011). Here, the rate

of photodegradation is exacerbated by trace metal ions, particularly

zinc and copper (Ahmad, Anwar, Ahmed, Sheraz & Khattak, 2017).

Vitamin C is also often added to culture media for defense against

oxidative stress. However, xylosone, a biproduct of Vitamin C

degradation, has shown to increases acidic charge variants on mAbs

(Chumsae et al., 2015). Trace metals have also demonstrated both

stabilizing and degrading impacts on Vitamin C in solution (Dolinska

et al., 2012; Yao & Asayama, 2017). Thus, it is possible that an

inadequate trace metal supply has the capacity to induce oxidative

stress and negatively affect mAb quality, as lapses in productivity and

destabilizing conformational changes of mAbs have been associated

with oxidative stress (Burkitt, Domann & O'Connor, 2010; Ha,

Hansen, Kol, Kildegaard & Lee, 2018; Handlogten, Zhu & Ahuja,

2018).

The detrimental effects of reactive oxygen species (ROS) such as

super‐oxides, peroxides, and hydroxyl radicals in mammalian cell

culture are well established and are frequently tied to the availability

of free transition metal ions (Halliwell, 2003). The accumulation of

free hydroxyl radicals, which damage a diverse array of biomolecules,

is catalyzed by a redox‐cycling of copper (Cu) and iron (Fe) ions

known as Fenton chemistry (Jomova, Baros & Valko, 2012; Park &

Imlay, 2003; Winterbourn, 1995):

+ / → + /+ + + +Reductant Cu Fe Reductant Cu Fe2 3 1 2 (1)

/ + → / + ⋅ + ( )+ + + + −Cu Fe H O Cu Fe OH OH Fenton reaction1 2
2 2

2 3

(2)

The oxidation of a reductant molecule (e.g., cysteine) by free

Cu2+/Fe3+ ions can activate disulfide bond formation to cystine,

causing a loss in oxidation state of the ions (Figure 1). The

subsequent decomposition of hydrogen peroxide by Cu1+/Fe2+ ions

induces the formation of free hydroxyl radicals. Moreover, the

regenerated oxidation state of Cu2+/Fe3+ allows the ions to

continuously partake in the Fenton mechanism.

Oxidative stress in serum‐based media is regulated by a host of

antioxidants and antioxidation qualities inherent to animal serum

(Yao & Asayama, 2017). For example, bovine serum albumin proteins

regulate oxidative stress via several primary mechanisms. Among the

17 disulfide bonds in albumin is one free cysteine residue (Cys34),

which is known to scavenge free radicals while methionine residues

simultaneously chelate redox‐active transition metals (Francis, 2010).

An additional mechanism of stress prevention includes disulfide

formation at the Cys34 site. Here, free cysteine can form a disulfide

complex to forestall its availability for Fenton reactions. The Cys34

site may also bind glutathione (GSH), an abundant and powerful

antioxidant in its reduced form. Among the host of antioxidative

mechanisms of GSH to scavenge ROS, its affinity to chelate Cu2+

further acts to inhibit the development of ROS species (Couto, Wood

& Barber, 2016; Freedman, Ciriolo & Peisach, 1989). Many different

strategies for supplementing medleys of nutrients in lieu of animal

serum exist (van der Valk et al., 2010). Although it is commonplace to

counterbalance trace metal supplementation with recombinant

albumin and other antioxidants that are no longer supplied

endogenously via animal serum, insufficient considerations here

may yield pro‐oxidant media and cause an array of dubious artifacts

in culture (Halliwell, 2014; McGillicuddy, Floris, Albrecht & Bones,

2018).

In addition to the copper‐ and iron‐complexing proteins which

inhibit the formation of ROS, zinc also serves as a very powerful

antioxidant in culture. (Powell, 2000). A cofactor for over 300

different enzymes and transcription factors, sufficient concentrations

of zinc are required for proper cellular functioning and metabolism

(Marreiro et al., 2017). With regard to its antioxidation properties,

several primary mechanisms help to demonstrate zinc’s ability to

most effectively combat redox‐induced ROS. Zinc has a high affinity

to stabilize and protect both intra‐ and extracellular sulfhydryl

groups from oxidation and subsequent ROS formation (Eide, 2011).

Zinc has just one oxidation state (Zn2+) and thus will not participate
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in redox activity. Instead, it will bind onto the sulfhydryl group on

cysteine molecules to inhibit Fenton mechanism otherwise caused by

copper and iron (Pace & Weerapana, 2014; Truong‐Tran, Carter,
Ruffin & Zalewski, 2001).

Metallothioneins (MTs) are a group of thiol‐rich proteins which

play a key role in the intracellular maintenance and redistribution of

zinc and copper throughout the cell. Comprised of approximately

30% sulfhydryl residues, these proteins maintain a very high affinity

to bind heavy metals and subsequently work to prevent metal

toxicity (Thirumoorthy, Manisenthil Kumar, Shyam Sundar, Panayap-

pan & Chatterjee, 2007). Furthermore, the ability of MTs to scavenge

free hydroxyl radicals provides key mechanisms for antioxidation

interplay (Ruttkay‐Nedecky et al., 2013; Valko, Jomova, Rhodes,

Kuča & Musílek, 2016). However, due to gene methylation, CHO cells

inherently express low levels of MT (Andersen et al., 1987; Lin, Chen,

Lee & Lin, 2005; Yu, Chen & Lin, 1998). However, even in the case of

overexpression, the extent to which MTs can combat cytotoxicity

under a prearranged zinc surplus in CHO‐K1 cultures is limited, as

cell cycle progression may not be affected by an excess of MT‐1
(Smith, Wiltshire, Furon, Beattie & Errington, 2008). This becomes

especially important when considering strategies that involve

supplementing cultures with zinc and/or copper in excess to enhance

productivity and quality of mAbs. Here, counterbalancing a zinc or

copper surplus by enhancing antioxidation affinities or mechanisms

may be necessary. For example, Zn/Cu superoxide dismutase (SOD1)

is a well‐characterized enzyme in mammalian cells that binds zinc and

copper to subsequently catalyze the decomposition of superoxide

radicals (O2
−; Fukai & Ushio‐Fukai, 2011). Previously, messenger

RNA sequencing of CHO cultures exposed to enhanced supplements

of tryptophan, manganese, and copper revealed altered expression of

both redox‐controlling and copper‐transport genes, including SOD1

(He et al., 2018). Human SOD1 transfection and upregulation have

previously been applied to CHO cells for research in amyotrophic

lateral sclerosis (Brotherton, Li & Glass, 2013). However, to date,

there are no reports examining the impact of overexpressed SOD1

on mAb production or product quality, nor the impact of SOD1

regulation upon enhanced zinc supply to CHO culture. Tryptophan

oxidation, which has shown to affect the antigen‐binding capacity of

certain mAbs, was also mitigated by tryptophan, manganese, and

copper supplementation (Hazeltine et al., 2016; Z. Wei et al., 2007).

This treatment similarly lowered free cysteine concentrations,

minimizing the capacity for Fenton chemistry perhaps otherwise

enhanced by copper supplementation. mAb conformation and

immunogenicity are significantly affected by the oxidation of other

amino acids on immunoglobulin G (IgG) side chains as well

(Torosantucci, Schöneich & Jiskoot, 2014). Like cysteine, methionine

similarly contains sulfur and is prone to oxidation in IgG antibodies

(Kim, Weiss & Levine, 2014). With regard to trace metals, copper‐
induced stresses have shown to impact aggregation affinity of IgG2

mAbs via Met246, His304, and His427 oxidation on the Fc region as

well (Luo et al., 2011).

It is proposed that zinc, copper, and iron will compete for

sulfhydryl binding sites linked with oxidative stress in mammalian

cells (Eide, 2011; Valko et al., 2016). Inherent trace metal variability

may impact a series of stress‐mechanisms. For example, excess zinc

can induce a copper deficiency, while zinc deficiencies have

previously been reported alongside excess copper buildup (Gaetke,

Chow‐Johnson & Chow, 2014; Marreiro et al., 2017). In either case,

mechanisms of oxidative stress are activated. A relationship between

the concentration of intracellular free zinc and copper ions and ROS

may help to characterize the presence and effects of competition

between metals. Because zinc can displace copper from binding sites,

any slight imbalance in raw material content may generate a more

substantial course of pro‐oxidation within a culture (Gaetke & Chow,

2003). Although redox‐active, manganese is needed as a cofactor for

manganese SOD2 and, therefore, serves as an antioxidant as well.

F IGURE 1 Visual representation of Fenton mechanisms on intracellular cysteine; (a) redox‐active transition metals catalyze disulfide bond
formation and subsequently induce ROS production via the Fenton reaction; (b) zinc stabilizes free sulfhydryl residues thereby inhibiting ROS
formation. ROS, reactive oxygen species
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However, manganese can also compete with iron for binding sites on

SOD, constraining these manganese‐activating antioxidation me-

chanisms (Aguirre & Culotta, 2012). With specific regard to CHO cell

culture, there have been no studies to further elucidate how this

competitive behavior may reflect on critical quality attributes of

mAbs.

4 | TRACE METAL AVAILABILITY ON CHO
CELL METABOLISM AND MAB
PRODUCTION

Trace metals are often supplied to culture media in excess to

maximize mAb productivity and quality profiles (Gilbert et al., 2014).

For example, up to 60 μM of zinc sulfate supplemented to CHO‐
DG44 cultures has been shown to enhance mAb productivity by

approximately two‐fold (Kim & Park, 2016). Similarly, cultures

inoculated with excess copper or exposed to daily copper provisions

up to a necessary threshold exhibited an increase in mAb

productivity as well as an increase in basic charge variants (Yuk

et al., 2015). These copper treatments are also favorable to CHO

cultures undergoing hypoxic stress, as enhanced copper can

upregulate and stabilize the expression of hypoxia‐inducible factor

1 alpha (Martin et al., 2005; Yuk et al., 2014). During process scale‐
up, when hypoxic conditions are oftentimes more profound due to

the enhanced cellular demand for oxygen, additional copper and iron

supplementation have shown to enhance cell growth and viability as

well as productivity of a recombinant protein under otherwise

hypoxic conditions (Qian et al., 2014).

Along with increasing mAb productivity, zinc supplementation

may also help to achieve the necessary threshold for apoptosis

suppression. Zinc is a known regulator of apoptosis in mammalian

cells via a host of different mechanisms and pathways. The

availability of zinc has shown to both influence and inhibit apoptosis

in various cancer cells (Franklin & Costello, 2009). For example, in

mice thymocytes, apoptosis induction/suppression by zinc sulfate

was dose‐dependent (Provinciali, Stefano & Fabris, 1995). Here,

smaller concentrations of added zinc to serum‐free media

(7.5–15 μM) induced apoptosis, whereas more significant zinc

supplementation (75–600 μM) suppressed apoptosis. Apoptotic

sequences may occur via either the extrinsic or intrinsic pathway.

Both pathways involve the activation of cysteine‐aspartic acid

protease 3 (caspase 3) to initiate the execution pathway towards

programmed cell death (Elmore, 2007). The extrinsic pathway can be

triggered by the interaction between a Fas ligand and a trio of Fas

receptors (death receptors) on a target cell (Elmore, 2007; Eron,

MacPherson, Dagbay & Hardy, 2018). A death‐inducing signaling

complex is subsequently completed by caspase 8 or caspase 10,

which in turn cleaves caspase 3 and induces the execution pathway.

A tumor necrosis factor model similarly induces the execution

pathway via the caspase 8/10 and caspase 3 cascade (Elmore, 2007;

Eron et al., 2018). The relationship between the extrinsic pathway

and zinc availability has not been widely examined (Clegg et al., 2005;

Eron et al., 2018). However, zinc has shown to prevent caspase 8

dimerization and activation by binding at two different sites (Eron

et al., 2018). Specifically regarding CHO cells, previous examinations

have noted evidence of apoptosis via the extrinsic pathway (Wei

et al., 2011). However, proteomic analysis of apoptotic CHO cells

subsequently pointed to the intrinsic pathway as the dominant

apoptosis mechanism based on the abundance of caspase 9 in the

early stages of cultures (Wei et al., 2011).

Efforts to elucidate the role of trace metals on apoptosis

suppression commonly involve the intrinsic pathway (Figure 2). The

intrinsic pathway is initiated by the phosphorylation of the Bad

protein. If not phosphorylated, Bad will complex with Bcl‐2/Bcl‐XL on

the outer mitochondrial membrane and allow for the release of

cytochrome C and subsequent formation of the apoptosome, which

activates caspase 9 and initiates the execution pathway

F IGURE 2 Simplified caspase cascade
as affected by free zinc ions; caspase

proteins in both intrinsic and extrinsic
cascades can bind zinc on sulfhydryl
residues as a reported mechanism for
suppressing apoptosis
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(Elmore, 2007). Zinc has shown to regulate caspase 9 activity by way

of two cysteine‐rich binding sites responsible for zinc‐mediated

inhibition (Huber & Hardy, 2012). Executioner caspase 3 is also

regulated by zinc at thiol‐rich sites (Eron et al., 2018; Perry et al.,

1997). Successful efforts to inhibit caspase 3 activity via glutathio-

nylation further help to draw a parallel between apoptosis and

oxidative stress with regard to zinc availability (Z. Huang, Pinto, Deng

& Richie, 2008). For example, apoptosis mechanisms are frequently

tied to ROS via several reported mechanisms, including procaspase

and cytochrome C release from mitochondria during oxidative stress

(Anathy et al., 2012; Kannan & Jain, 2000; Zuo et al., 2009). Although

specific mechanisms remain unclear, it is possible that enhanced zinc

may protect caspase thiol residues from oxidation by Fenton‐induced
ROS and subsequently combat oxidative stress to suppress apoptosis

(Huber & Hardy, 2012; Truong‐Tran et al., 2001).

CHO cell‐specific investigations into these phenomena help to

expand the applicability of these mechanisms to mAb productivity.

Apoptotic CHO cells may similarly demonstrate the overexpression

of lactate dehydrogenase (LDH), which catalyzes pyruvate to lactate

proceeding the glycolytic pathway (Wei et al., 2011). Lactate

accumulation causes adverse effects in CHO cell culture, primarily

on cell growth and productivity (Konakovsky et al., 2016; Zagari,

Jordan, Stettler, Broly & Wurm, 2013). The effects of apoptosis‐
inhibited environments on lactate metabolism have been character-

ized. Here, efforts to modulate CHO metabolism to limit lactate

build‐up have included the overexpression of antiapoptotic genes,

which demonstrated a 60% reduction in caspase 3 activity (Dorai

et al., 2009). Cell line and metabolic engineering approaches to

minimizing lactate accumulation have furthermore involved inducing

a shift to lactate consumption during the stationary phase of CHO

cultures (Toussaint, Henry & Durocher, 2016). This effect coincides

with more optimal culture performance and higher protein titers and

is thus a desirable characteristic for cell culture.

A wide variety of approaches to controlling this lactate shift exist,

which include reducing glycolysis flux, limited amino acid supple-

mentation, and a host of various cell line engineering techniques

(Hartley, Walker, Chung & Morten, 2018; Kishishita et al., 2015;

Mulukutla, Gramer & Hu, 2012). With specific regard to trace metals,

copper supplementation to chemically‐defined media has also

demonstrated more favorable culture performance by constraining

lactate accumulation in CHO cultures. At 5 μM concentrations of

copper, downregulation of the LDH gene (Ldha) was noticed in an IgG

producing CHO cell line—likely accounting for decreased lactate

accumulation (Qian et al., 2011). Additional conclusions from this

examination help to elucidate the potential role of copper supple-

mentation on iron transport and ROS accumulation—a key area of

trace metal interplay in cell culture. The downregulation of the

transferrin receptor gene Tfrc demonstrates a possible effect of

copper on limiting iron transport/accumulation. A downregulation of

NADPH oxidase 4 (Nox‐4) was also observed. A corresponding

decrease in Nox‐4 may help prevent the accumulation of ROS,

perhaps countering the affinity of copper to oxidize free thiol

residues and induce Fenton chemistry.

Gene regulation as documented by Qian et al. (2011) is not

ubiquitous in CHO cultures exposed to comparable levels of copper

treatments. On a different mAb‐producing cell line, microarray, and

RNA‐seq characterizations of gene expression were unable to reveal

a substantially up‐ or downregulated gene related to lactate

metabolism line (Yuk et al., 2014). Differences in sampling times,

cell lines, and inherent trace metal availability in media are possible

reasons for the contrast in the degree to which copper‐induced
lactate shift is initiated at gene transcription. Upregulation of early

growth factor 1 may be a response to copper‐induced oxidative

stress, yet this observation occurred after the lactate shift and hence

the impact of oxidative stress is unclear (Yuk et al., 2014). However,

it has been shown that CHO cultures undergoing a shift to net lactate

consumption similarly demonstrate increased oxidative metabolism

(Templeton, Dean, Reddy & Young, 2013; Zagari et al., 2013).

Corresponding observations also include decreasing intracellular

redox ratios and upregulated oxidative pentose phosphate pathway,

likely as a combative response to ROS generated by accelerated

oxidative metabolism (Sengupta, Rose & Morgan, 2011; Templeton

et al., 2013). In fact, dissolved oxygen content at 50% air saturation

similarly demonstrated a shift to net lactate consumption in GS‐CHO

cells, although redox activity is significantly affected by this

treatment (Handlogten et al., 2018).

5 | IMPACT OF TRACE METAL
SUPPLEMENTATION ON PRODUCT
QUALITY

N‐linked glycosylation of mAbs plays a pivotal role in protein folding as

well as key quality metrics such as solubility, product half‐life, and
efficacy (Mimura et al., 2018; Solá & Griebenow, 2009; Zheng, Bantog &

Bayer, 2011). The effects of different glycosylation patterns on product

quality is a well‐characterized focus in therapeutic drug production (Sha,

Agarabi, Brorson, Lee & Yoon, 2016). Zinc, copper, and manganese have

shown to affect mAb glycosylation to different degrees of significance.

While maximizing mAb productivity via zinc supplementation, cultures

on the threshold of zinc toxicity can decrease galactosylation on IgG

mAbs, whereby a zinc/manganese imbalance triggers unfavorable

galactosylation patterns (Prabhu, Gadre & Gadgil, 2018). Upon

supplementing CHO cell cultures with excess copper up to the desired

threshold, Yuk and coauthors noticed an increase in basic charge

variants alongside increased culture productivity and shift to net lactate

consumption (Yuk et al., 2015). Copper supplementation has also been

reported to enhance the percentage of basic charge variants via

deamidation on C‐terminal prolines of an IgG1 mAb (Kaschak et al.,

2011).

Manganese is a well‐known cofactor for several glycosyltransfer-

ase enzymes involved in N‐linked glycan synthesis, including

galactosyltransferases which are responsible for the addition of

galactose monosaccharides onto various glycoforms, such as aspar-

agine 297 (Asn‐297) residues on the side chains of IgG mAbs (Zheng

et al., 2011). Further supplementation of CHO cell cultures with
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excess manganese has demonstrated various results on glycan

conformation. By supplementing 40 μM manganese salts to a CHO‐
K1 cell line, increases in G1F abundance along with a decrease in G0

and G0F glycans on an IgG1 mAb have been reported (St Amand,

Radhakrishnan, Robinson & Ogunnaike, 2014). However, examina-

tions into the effects of manganese on high mannose glycoforms have

reported conflicting results. For example, Pacis et al (2011) reported

a decrease in high mannose (M5) glycoforms upon the supplementa-

tion of 0.25–1.0 μM manganese on Day 3 of an IgG1‐producing
culture (Pacis, Yu, Autsen, Bayer & Li, 2011). In contrast, Surve and

Gadgil (2015), demonstrated a 27% increase in high mannose glycans

when supplementing 16 μM manganese to the 1 nM basal concen-

tration. However, this result was predicated on the limited

availability of glucose to the culture media, as it was exchanged for

galactose in efforts to constrain lactate accumulation to nontoxic

levels. Here, minimizing the presence of high mannose glycans by

way of manganese supplementation was incumbent on a needed

threshold of glucose available in the culture media. Enhanced copper

supplementation has also shown to minimize glucose consumption,

although no mention of the impact of high copper media on product

quality was provided (Luo et al., 2012). Furthermore, there are no

additional reports on the collaborative role of both copper and

manganese supplementation on glucose metabolism and the sub-

sequent impact on N‐linked glycosylation patterns.

Batch and fed‐batch cultures have been employed to characterize

the effects of manganese on glycosylation, however, recent studies

have also included perfusion processes. Here, galactose and

manganese supplementation have shown to enhance the abundance

of complex glycans through a 20‐day run (Karst et al., 2017). The

degree to which these supplements impact glycan synthesis is,

however, governed by various culture parameters which may

oscillate with time. Thus, manipulating feeding regimes of manganese

and other nutrients can help to maintain a consistent glycosylation

pattern throughout the duration of the process (Villiger, Roulet et al.,

2016). Modeling efforts have furthermore allowed for the prediction

of glycosylation patterns under these same feeding treatments

(Villiger, Scibona et al., 2016). A separate study similarly concluded

that timewise supplementation of manganese is critical for glycosyla-

tion control in mAbs (Radhakrishnan, Robinson & Ogunnaike, 2018).

During both lag and exponential phases, additional manganese

supplementation demonstrated a more significant impact on fucosy-

lated glycans than during the stationary phase. This examination

concurrently focused on metal chelation using ethylenediaminete-

traacetic acid (EDTA) in a design of experiments to further

demonstrate the extent of controllable glycosylation. When supplied

in the presence of additional manganese, EDTA supplementation

showed to enhance both cell growth and mAb titer alike, as well as

alter the distribution of glycans (Radhakrishnan et al., 2018). Because

EDTA can chelate any number of trace metals in cell culture media, a

unique relationship between excess manganese and adjusted trace

metal availability by EDTA is presented. However, there are no

further examinations into metal‐targeted specificity of EDTA in CHO

culture alongside additional trace metal supplementations, Table 1. T
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6 | FUTURE DIRECTIONS AND
CONCLUSION

These research endeavors help to illustrate the role that traces metal

presence has on CHO culture productivity and quality via oxidation/

antioxidation mechanisms, apoptosis, glucose and lactate metabolism,

glycosylation, and corresponding genomic and transcriptomic charac-

terizations thereof. Furthermore, the degree of trace metal variability

which exists on both a lot‐to‐lot and vendor‐to‐vendor basis adds

additional complexities to this focus. More comprehensive quantifica-

tion of metal ions in CHO culture can help to further elucidate the key

areas by which trace metal variability is impactful. In this respect, it is

important to continue consideration of the impact of trace metal

variability on the multitude of CHO culture performance characteristics

such as oxidative stress and mAb oxidation, apoptotic cascades, nutrient

consumption, and glycosylation. Efforts to streamline trace metal

analytics into process analytical technologies and subsequent modeling

efforts may help to further understanding of the degree to which trace

metal variability impacts overall culture performance. In doing so, in‐line
trace metal analysis and subsequent control strategies may be

employed.
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