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A B S T R A C T   

Recombinant Escherichia coli grown in large-scale fermenters are used extensively to produce plasmids and 
biopharmaceuticals. One method commonly used to control culture growth is predefined glucose feeding, often 
an exponential feeding profile. Predefined feeding profiles cannot adjust automatically to metabolic state 
changes, such as the metabolic burden associated with recombinant protein expression or high-cell density 
associated stresses. As the culture oxygen consumption rates indicates a culture’s metabolic state, there exist 
several methods to estimate the oxygen uptake rate (OUR). These common OUR methods have limited appli-
cation since these approaches either disrupt the oxygen supply, rely on empirical relationships, or are unable to 
account for latency and filtering effects. In this study, an oxygen transfer rate (OTR) estimator was developed to 
aid OUR prediction. This non-disruptive OTR estimator uses the dissolved oxygen and the off-gas oxygen con-
centration, in parallel. This new OTR estimator captures small variations in OTR due to physical and chemical 
manipulations of the fermenter, such as in stir speed variation, glucose feeding rate change, and recombinant 
protein expression. Due its sensitivity, this non-disruptive real-time OTR estimator could be integrated with feed 
control algorithms to maintain the metabolic state of a culture to a desired setpoint.   

1. Introduction 

Escherichia coli are used extensively in industry to produce both 
biopharmaceuticals and plasmids (Baeshen et al., 2015; Walsh, 2018). 
E. coli can grow rapidly on inexpensive media and are easily modified 
genetically (Swartz, 2001). In current practice, most industrial and 
benchtop fermenters use simple control strategies, specifically, closed 
loop proportional-integral-differential (PID) control for environmental 
variables such as pH, temperature, and dissolved oxygen (DO). Glucose 
feeding for fed-batch cultures commonly uses a preset exponential 
feeding schedule (Korz et al., 1995). Yet, these feeding practices are 
often developed to operate without any input from common on-line 
sensor measurements, such as the DO and off-gas oxygen concentra-
tions (Chen et al., 1995). Both DO and off-gas oxygen concentrations are 
indicative of culture metabolic state. Specifically for E. coli, efficient 
growth and recombinant protein production occurs when glycolysis and 
the tricarboxylic acid (TCA) cycle are balanced (Gonzalez et al., 2017; 
Korz et al., 1995; Wolfe, 2005; Xu et al., 1999). When the glycolysis flux 
is higher than the TCA cycle maximum flux, acetate accumulates, even 
in the presence of sufficient oxygen (Sharma et al., 2007). This 

metabolic state is commonly called overflow metabolism (Johnston 
et al., 2003; Xu et al., 1999). Further, acetate accumulation is known to 
inhibit growth and recombinant protein production yield (Sharma et al., 
2007; Xu et al., 1999). Thus, overflow metabolism is best avoided for 
high cell density cultures (Korz et al., 1995). To avoid overflow meta-
bolism, the glycolytic flux, via controlled glucose feeding, need to bal-
ance the TCA cycle flux. 

Currently, there are no direct method to measure the metabolic state 
of a culture, so surrogates are used, such as the growth rate, glucose 
consumption rate, and oxygen uptake rate (OUR). Standard practices 
require off-line assessment of cell densities over time to evaluate growth 
rates. There are new tools to measure glucose on-line; however, most 
fermentations still rely on off-line glucose measurements to assess the 
glucose consumption rate. There are several approaches to obtain OUR, 
which can be divided into three approaches: 1) dynamic, 2) global mass 
balance, and 3) stationary liquid mass balance (Martinez-Monge et al., 
2019; Pappenreiter et al., 2019). These three main methods all have 
drawbacks due to underlying assumptions or operational difficulties 
(Bandyopa and Humphrey, 1967; Doi et al., 2020; Fontova et al., 2018; 
Goldrick et al., 2018; Martinez-Monge et al., 2019; Seidel et al., 2021; 
Van’t Riet, 1979). For example, the dynamic method is disruptive as it 
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requires the oxygen gas flow to be stopped. Most industrial facilities will 
not use this method during production due to the high risk of culture 
loss, and will instead rely on volumetric oxygen mass transfer coefficient 
(kLa) values determined in buffer and extrapolated to production con-
ditions (Doi et al., 2020). The global mass balance method uses the 
difference between the inlet and outlet gas concentrations, thus requires 
two on-line gas sensors (Fontova et al., 2018; Patel and Thibault, 2009). 
The stationary liquid mass balance method assumes steady-state and 
uses the difference between the liquid oxygen saturation constant (C*) 
and the measured DO (Martinez-Monge et al.; Pappenreiter et al., 2019). 
All three of these standard methods lack the capability to account for 
latency and filtering effects. 

The underlying principle to reliably and precisely estimate OUR is an 
accurate assessment of kLa; however, real-time kLa measurements have 
been unreliable (Ducommun et al., 2000; Eyer et al., 1995; Nienow, 
2015). One early approach to estimate kLa was the empirical Van’t Riet 
(1979) equation. This approach estimates kLa from the power per vol-
ume ratio, superficial gas velocity and three empirical constants ob-
tained for a particular vessel (Van’t Riet, 1979). Goldrick et al. (2018) 
used kLa to control the glucose feeding augmented with the van’t Riet 
(1979)) equation and off-line glucose measurements (Goldrick et al., 
2018; Van’t Riet, 1979); however, they were forced to smooth the ox-
ygen transfer rate (OTR) values to predict OUR. Subsequently, any 
time-dependent details regarding real-time OUR information were lost. 
Fontova et al. (2018) calculated OUR in real-time using a modified 
global mass balance method (alternated the gas sensor between the inlet 
and outlet streams); yet, assumed a constant kLa value (Fontova et al., 
2018). They noted this constant kLa assumption caused error in the OUR 
estimates at later culture times. And, Doi et al. (2020) measured kLaO2 
and kLaCO2 using the gas-out method in buffer for several bioreactor 
configurations (Doi et al., 2020). However, their approach neglected the 
interaction of cell secretions on kLa over the culture duration. 

In order to obtain accurate real-time kLa estimates, the signal 
filtering and delays need to be described mathematically. First, the off- 
gas measurement is heavily filtered by gas mixing in the headspace of 
the bioreactor. Second, the off-gas signal is delayed due to time required 
for the oxygen to travel from the liquid surface to the off-gas sensor. OTR 
is directly related to the volumetric coefficient, kLa, such that if kLa is 
known, OTR can be estimated directly. Unfortunately, kLa is a complex 
parameter that depends on stir speed, impeller shape and dimension, 
bioreactor shape and dimensions, chemical characteristics of the media, 
viscosity, temperature, among many other parameters (Aroniada et al., 
2020; Campbell et al., 2020). There is also evidence that kLa changes 

over the course of a fermentation (Patel and Thibault, 2009). A math-
ematical method to estimate kLa in real-time would allow for OTR es-
timates, OUR calculations, and subsequent metabolic state assessment. 

In this study, a non-disruptive kLa estimator will be described that 
uses only commonly available sensors (off-gas and DO). This sensitive 
kLa estimator can continuously estimate kLa in real-time. These real-time 
kLa estimate can then be used to determine OTR in real-time, which 
subsequential can be used to calculate OUR over the culture time. A 
recursive least squares (RLS) approach was used, in conjugation, with a 
first-order gas mixing model to fit a simple model to the observed data, 
which is summarized as the RLS-OTR algorithm. Two recombinant 
E. coli fermentations were conducted to validate the sensitivity of the 
OTR estimator to fed-batch fermentation conditions. First, a fermenta-
tion with a predefined constant exponential feeding profile was used to 
assess the responsiveness of the OTR estimator to small glucose pulses. 
The second fermentation was used to assess the effect of large glucose 
perturbations on the OTR estimator, by causing the cells to enter the 
overflow metabolic state. Further, the OTR estimator was challenged by 
step changes in the inlet oxygen concentration. These recombinant 
cultures were induced and the capability to estimate OTR in stressed 
cultures was evaluated. 

2. Materials and methods 

2.1. Bacterial strain and plasmids 

E. coli MG1655 were obtained from the American Type Culture 
Collection (ATCC, Manassas, VA, USA). The plasmid pTVP1GFP (gift 
from A. Villaverde) encodes the VP1 capsid of foot-and mouth disease 
(Liu et al., 2006) fused to green fluorescent protein (GFP) (Garcia--
Fruitos et al., 2007). E. coli MG1655 were transformed with the 
pTVP1GFP plasmid (Baig et al., 2014). 

2.2. Culture conditions 

E. coli MG1655 pTVP1GFP were cultured in a minimal medium 
described previously (Korz et al., 1995; Sharma et al., 2007). Frozen 
stock (1 mL, stored at − 80 ◦C) were thawed and added to the minimal 
medium containing 40 mg/L ampicillin (ThermoFisher). Cells were 
grown overnight in a shaker incubator (C24, New Brunswick Scientific, 
Inc.) at 37 ◦C and 250 rpm. Cell densities (OD) were obtained at 600 nm 
with a spectrophotometer (Spectronic 30 Genesys), where 1 OD is 
equivalent to 0.45 g dry cell weight per liter. Samples were diluted with 

Nomenclature 

α0 fitting parameter. 
α0 kLa fitting parameter, normalized to C∗

cal. 
α1 fitting parameter. 
α1 fitting parameter, normalized to C∗

cal. 
y0 inlet oxygen concentration (% oxygen). 
y0,i inlet oxygen concentration at calibration (% oxygen). 
y1 bubble exiting liquid oxygen concentration (% oxygen). 
y2 headspace oxygen concentration (% oxygen). 
y3 off-gas sensor oxygen concentration (% oxygen). 
CL liquid oxygen concentration (mg/L). 
C* liquid oxygen saturation constant (mg/L). 
C∗

cal liquid oxygen saturation constant at calibration (mg/L). 
DO dissolved oxygen (% saturation). 
Hg(s) Laplace transform of transfer function for y0 to y3. 
hg(t) transfer function for y0 to y3. 
kLa volumetric oxygen mass transfer coefficient (h− 1). 
kLa volumetric oxygen mass transfer coefficient (h− 1), 

normalized to C*cal. 
Mf mass flow rate (L/min). 
N stir speed (rpm). 
OD optical density, used as measure of cell density. 
OTR oxygen transfer rate (g/L⋅h). 
OTRavg OTR determined from measured yO and y3, time-averaged 

by default. 
OTRRLS OTR calculated by the RLS-OTR algorithm. 
OUR oxygen uptake rate (g/L⋅h). 
P Pressure (bar). 
qO2 cell specific oxygen consumption rate (g O2/g cell⋅h). 
R universal gas constant (0.08314 L⋅bar/mol⋅K). 
RLS recursive least squares. 
T temperature (◦C or K). 
V1 liquid volume. 
V2 headspace volume. 
X cell density (OD at 600 nm).  
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deionized water to obtain absorbance readings in the linear range 
(0–0.45 OD). The shake flasks at approximately 2.5 OD, and still in the 
exponential phase, were used to inoculate the fermenters. 

2.3. Fermenter operation 

Fermentations were conducted in a 5-L BioStatB fermenter (Sarto-
rius, Bethlehem, PA). Defined batch medium and feed medium were 
described previously in Korz et al. (1995) with the modifications 
described by Sharma et al. (2007). The temperature and pH were 
controlled by the BiostatB DCU controller. The pH and temperature 
during the fermentations were maintained at 6.90 and 37 ◦C, respec-
tively. A solution of 20 % ammonium hydroxide was used for pH control. 
All cultures were induced with 1.0 mM IPTG (iso-
propyl-β-thiogalactopyranoside) in the fed-batch phase at approxi-
mately 35 OD. Silicone tubing (LS14, Cole-Parmer) was used for all 
connections with the bioreactor, which resulted in a maximum flowrate 
of 20 mL/min. The pre-defined exponential feed rate was 0.28 h− 1 for 
both fermentations; however, the second fermentation had several 
planned glucose feeding perturbations. 

2.4. Data collection 

Matlab (Mathworks, US) was used to collect data and designate 
setpoints for stir speed and the feed rates, as well as perform the RLS- 
OTR calculations. The stir speed was used to maintain a DO setpoint 
of 60 %, unless stated otherwise. The BiostatB pump speeds are dis-
cretized into 2 % increments, thus, a pump dithering protocol was used 
to smooth this quantization. The MFCS OPC software (Sartorius) was 
used to communicate between Matlab and the MFCS data acquisition 
software (Sartorius). Gas flow rates (0–5 L/min) to the bioreactor was 
controlled using GFC 17 mass flow controllers (Aalborg, Germany). The 
off-gas measurements, such as pressure, gas temperature, and oxygen 
concentration, were collected by a BlueInOne Ferm 1050 (BlueSens, 
Germany). 

3. Theory and calculations 

The OTR estimator uses the input oxygen concentration (y0), off-gas 
sensor oxygen concentration (y3), oxygen concentration in the liquid 
(CL) measured as DO, volumetric gas flow rates (Mf), liquid volume (V1), 
and stir speed (N) measurements from the bioreactor to calculate in real- 
time kLa. OTR is then estimate from kLa, and subsequentially could be 
used to determine OUR. The RLS-OTR algorithm calculations are sum-
marized following the theoretical equations. 

3.1. OTR via off-gas measurements 

Fig. 1A shows the physical locations within the fermenter for the 
parameters used to estimate kLa. The oxygen mole ratio yi of gas are 
shown as it passes through the bioreactor (shown as the molar oxygen 
percentage (%) in subsequent figures): y0 for the input gas, y1 for bub-
bles as these leave the media, y2 for the fully mixed headspace gas, and 
y3 for the off-gas sensor measurement. Note that in this present work, y0 
is calculated from the mass flow of the input gas sources. This approach 
could be modified to use a inlet gas sensor measurement, if available. 
OTR can, in theory, be calculated directly from mole ratios y0 and y1 
described in Eq. (1); however, a direct measurement of y1 is generally 
not possible. 

OTR =
Mf P
V1RT

(y0 − y1) (1)  

where P is the headspace pressure, T is temperature, and R is the uni-
versal gas constant. In the global mass balance method, y1 is simply 
replaced in Eq. (1) with the off-gas sensor measurement y3 (Patel and 

Thibault, 2009) and shown as 

OTRavg =
Mf P
V1RT

(y0 − y3) (2) 

The global mass balance method to determine OTR represents a time- 
averaged estimate of OTR (written here as OTRavg), since it neglects the 
filtering effects of headspace mixing and the sensor dynamics. To ac-
count for these latency and filtering effects, in this work, the headspace 
and sensor dynamics are explicitly modeled. The headspace mixing is 
modeled as 

dy2

dt
=

Mf

V2
(y2 − y1) (3)  

where V2 is the headspace volume. The off-gas sensor dynamics are 
modeled as a first order reaction 

dy3

dt
=

1
τ2
(y3 − y2) (4)  

where τ2 is the time constant associated with the sensor. The transport 
delay for gas to move from the bioreactor to the sensor was found to be 
negligible for the current system, yet this effect could be readily added to 
the model for larger systems or shared off-gas sensors. From Eq. (3) and 
Eq. (4), the Laplace-domain transfer function from y1 to y3 is given by 

Hg(s) =
1

((
V2
Mf

)
s + 1

)
(τ2s + 1)

(5) 

Fig. 1. Bioreactor schematic and RLS-OTR algorithm flow diagram. A) Biore-
actor schematic with positions of key parameters indicated. y0 – oxygen con-
centration entering the bioreactor (inlet oxygen concentration, % oxygen); y1– 
oxygen concentration in the bubbles exiting the liquid (% oxygen); y2– oxygen 
concentration of the gas leaving the bioreactor (% oxygen); y3– oxygen con-
centration at the off-gas sensor (% oxygen); Mf – mass flowrate of y0; V1–liquid 
volume; V2–headspace volume; and N–stir speed (rpm). B) Calculation flow 
diagram for the RLS-OTR algorithm. Data is acquired from the bioreactor and 
off-gas sensor and processed by the RLS-OTR algorithm in Matlab. A Savitsky- 
Golay (SG) filter is used to reduce signal noise. The reduced noise data is then 
convolved to determine y1. A second SG filter is used to calculate the final 
OTR estimate. 
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where y3 can be estimated by Hg(s) ∗ y1. Note: this notation represents 
the time domain input signal b1 is filtered by the system represented by 
Hg(s) to give time-domain output signal y3. 

3.2. OTR via oxygen concentration measurements 

OTR can also be theoretically calculated from the liquid oxygen 
concentration (CL), as shown in Eq. (6). 

OTR = kLa(C∗ − CL) (6)  

where kLa is the volumetric mass transfer coefficient, and C∗ is the 
saturation oxygen concentration. C∗ depends on the inlet gas oxygen 
concentration (y0). How CL changes with time is a function of OTR and 
OUR given by Eq. (7) (neglecting dilution effects). 

dCL

dt
= kLa(C∗ − CL) − OUR (7) 

Thus, if kLa is known, OTR can be calculated directly from the liquid 
oxygen concentration using Eq. (6). Unfortunately, kLa depends on 
many physical parameters that vary through time. There are several 
methods to estimate kLa, such as the Van’t Riet’s (1979) equation. In this 
work, kLa will be modeled as linearly related to stir speed (N) 

kLa = α0 +α1(N − N0) (8)  

where N0 is an arbitrary constant used to center the model (Wang et al., 
2014). The parameters α0 and α1 are continuously calibrated to account 
for the dependence of kLa on other unmeasurable physical parameters. 

3.3. OTR via DO sensor measurements 

At the beginning of a fermentation trial, the input gas oxygen con-
centration is y0,cal, the corresponding saturated oxygen concentration of 
the media is C∗

cal, and the DO measurement is calibrated to 100 % at this 
concentration. DO measurements do not suffer from the headspace 
mixing and slower sensor dynamics of off-gas measurements, so esti-
mating OTR from dissolved oxygen is more responsive than using the 
global mass balance off-gas calculation. Due to the calibration with air, 
DO measurements are related to oxygen concentration by, and not 
identical to the liquid concentration (CL) 

CL = C∗
cal

DO
100

(9) 

If the input oxygen concentration is changed, then by Henry’s law, 
the saturation concentration is 

C∗ = C∗
cal

y0

y0,cal
(10) 

Substituting Eq. (8), Eq. (9) and Eq. (10) into Eq. (6) allows OTR to 
be estimated online 

OTR = (α0 +α1(N − N0))

(
y0

y0,cal
−

DO
100

)

(11)  

where α0 = C∗
calα0 and α1 = C∗

calα1. If α0 and α1 are known, then OTR can 
be calculated from percentage DO measurements without the needed to 
know C∗

cal. Eq. (11) suggests the definition 

kLa = α0 +α1(N − N0) (12)  

which differs from kLa by a factor of C∗
cal. 

3.4. Matching OTR off-gas and OTR dissolved oxygen 

The OTR value is identical whether calculated from oxygen mole 
ratios Eq. (1) or from dissolved oxygen concentrations Eq. (11). 

Therefore, setting Eq. (1) and Eq. (11) equal allows one to solve for the 
unmeasurable oxygen concentration y1 as 

ŷ1 = y0 −
V1RT
Mf P

(α0 + α1(N − N0) )

(
y0

y0,cal
−

DO
100

)

(13)  

where the ŷ1 indicates that the quantity is calculated from DO rather 
than measured directly. Since Hg(s) ∗ ŷ1 predicts the off-gas measure-
ment y3 based on DO measurement, Hg(s) ∗ ŷ1 is set equal to y3 and 
rearrange where the unknown parameters α0 and α1 are placed on the 
right hand side of the equation, given as 

(
Hg(s) ∗ y0 − y3

)
= Hg(s) ∗

(
V1RT
Mf P

(
y0

y0,i
−

DO
100

))

α0 +Hg(s)

∗

(
V1RT
Mf P

(N − N0)

(
y0

y0,i
−

DO
100

))

α1 (14) 

Eq. (14) can be solved using least squares for the unknown param-
eters α0 and α1. Conceptually, the parameters α0 and α1 are fit so that 
OTR calculated from DO using Eq. (8) matches the ideal OTR from Eq. 
(1) without ever having direct access to the unmeasurable signal y1. 

3.5. Recursive least squares formalism 

In the present work, the α0 and α1 parameters are calculated on-line 
using the recursive least squares (RLS) algorithm, which allows the 
parameters to account for the effects of other slowly evolving parame-
ters on kLa. For more detail on RLS, see Sections 3.5 and 3.6 and Simon 
(2006). Since Eq. (14) is only a function of two variables, α0 and α1, this 
calculation method will be referred to as the RLS-OTR algorithm, and 
represented as OTRRLS to indicate that the RLS-OTR algorithm was used 
(Fig. 1B). Mf , P, V1, and T are all assumed to be relatively constant for 
this calculation. The matrices used for the RLS algorithm method are: 

Ax = Y (15)  

Y =

[
Mf P

V1 T
(
Hg(s) ∗ y0 − y3

)
]

(16)  

A =

[

Hg(s) ∗

(
y0

y0,i
−

DO
100

)

Hg(s) ∗ (N − N0)

(
y0

y0,i
−

DO
100

) ]

(17)  

x = [α0 α1 ]
T (18)  

Where α0 and α1 are approximated by solving the linear set or equations 
given as Eq. (14) to Eq. (18). With α0 and α1 estimated from the data and 
transformed to solve for y1. This allows one to solve for kLa by Eq. (12) 
and OTRRLS by Eq. (11). Fig. 1B shows the overall logic flow diagram for 
the RLS-OTR algorithm. 

3.6. RLS algorithm 

The time varying signals A[t], x[t]. and Y[t] are defined as the sample 
of A, x, and Y, respectively, at time t. To initialized the RLS algorithm, A 
[0], Y[0], and x[0] were set to sized zero matrix as shown in Eqs. (19), 
(20) and (21): 

A[0] = [ 0 0 ] (19)  

Y[0] = [0] (20)  

x[0] = [ 0 0 ] (21) 

To implement the RLS algorithm, a forgetting factor, λ, the Kalman 
gain matrix, k[t], and a matrix P[t] were needed. For this work, λ = 0.95 
was selected; however, this parameter could be tuned to specific appli-
cations. The k[t] and P[t] matrices were initialized to k[0] and P[0] as 
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shown in Eqs. (22) and (23): 

k[0] = [ 0 0 ] (22)  

P[0] =
[

1 0
0 1

]

(23) 

The k[t] and P[t] equations were then calculated on-line using Eqs. 
(24), (25) and (26) to estimate x[t], which contained the estimates of the 
fitting parameters, α0 and α1. 

k[t] =
P[t − 1]A[t]

λ + AT [t]P[t − 1]AT [t]
(24)  

P[t] = λ− 1P[t − 1] + k[t]AT [t]λ− 1P[t − 1] (25)  

x[t] = x[t − 1] + k[t](Y [t] − AT [t]x[t − 1]) (26)  

4. Results and discussion 

Two fermentations were conducted to characterize and compare the 
developed OTR estimator (OTRRLS) with a standard OTR (OTRavg) 
calculation method provided by the Bluesens (Germany) off-gas sensor 
software. In this work, OTRavg is a modified version of the global mass 
balance method, as the inlet oxygen concentration is calculated instead 
of measured (Patel and Thibault, 2009). The first fermentation used a 
constant exponential feed profile with an exponential rate (μ =

0.28 h− 1) that was maintained the entire fermentation. The second 
fermentation used the same predefined exponential feed profiles, but the 
glucose feed pump was pulsed to create substantial perturbations. The 
constant exponential feed fermentation was used to evaluate the OTR 
estimator sensitivity to small glucose pulses. The perturbed exponential 
feed fermentations characterized the OTR estimator responses to step 
changes in the inlet oxygen concentration and to overflow metabolism. 
Since both fermentations were induced to express the recombinant 
protein, the capability to estimate kLa for stressed cells was character-
ized (Bentley and Kompala, 1989). 

The growth and glucose feed pump flow rate profiles for the two 
experimental fed-batch fermentations are shown in Fig. 2. Both cultures 
performed well and reached over 100 OD (128 and 106 OD, respec-
tively, for the constant and perturbed exponential feed protocols). The 
cultures had different inoculum concentrations that resulted in shifted 
feed profiles for the transition from batch to fed-batch modes. The 
glucose feed started when the initial media glucose (5 g/L) was 
depleted, which aligned with the cell densities reaching approximately 5 
OD. The transition from batch to fed-batch occurred at 9-h for the 
constant exponential feed fermentation and at 12.4-h for perturbed 
exponential feed fermentation. Induction was at 13 h (25.2 OD) for the 
constant exponential feed and 17 h (37.5 OD) for the perturbed expo-
nential feed culture. The initial stir speed was 600 rpm for both cultures 
which resulted in high DO values. 

The RLS-OTR algorithm was used to determine kLa, and then OTR 
(OTRRLS). For comparison, the global mass-transfer OTR (OTRavg) pre-
sented in Eq. (2) was calculated, as well. These OTR comparisons are 
shown for the constant exponential feed cultures in Fig. 3. Since RLS- 
OTR calculations are dependent on y0, y3, DO, and stir speed, these 
time profiles have also been included in Fig. 3. As the cell density 
increased it was necessary to enrich the inlet gas stream with oxygen in 
order to maintain the DO. Unfortunately, the manually selected initial 
enrichment levels only required the oxygen mass flow controllers to 
operate near its lower calibration range. The low enrichment levels 
caused y0 to oscillate. Thus between 10 and 14 h (Fig. 3C), and as a 
result, the corresponding OTR estimates were not reliable during this 
time (Fig. 3A). These step changes in the y0 profile are readily observ-
able (Fig. 3C). Once the oxygen mass flow controller was set to higher 
gas flow rates (≥20 % enrichment), the OTR estimates stabilized. Over 
the course of the experiment, both algorithms were able to make OTR 

estimates despite the high degree of variability in the DO and stir speed, 
and both algorithms predicted OTR to increase with increasing cell 
densities. When the inlet gas composition changes, the OTRavg estimate 
spikes, as can be clearly observed at hours 16, 17, and 17.5 h. These 
spikes could be reduced or eliminated by replacing the y0 with Hg(s) ∗ y0 

in the global balance method Eq. (2), so that the inlet gas measurement 
is filtered similarly to y3. OTRRLS is minimally affected by changes in 
inlet gas, because this algorithm already accounts for headspace filtering 
and sensor dynamics. At the resolution of the entire fermentation, it is 
difficult to fully appreciate the latency and filtering effects captured by 
OTRRLS, but not by OTRavg. 

To highlight the differences in the OTRRLS and OTRavg responses, the 
time period from 15.4 to 15.65 h (15 min) is shown in Fig. 4 for the 
constant exponential feed fermentation. For the time period shown, the 
pump speed value for the predefined exponential feed profile was 17 % 
(3.4 mL/min). Due to the operational limits of the BiostatB DCU pumps, 
only even-numbered percentages can be obtained, despite an odd- 
numbered setting. To approximate odd-numbered percentages, a dith-
ering algorithm was developed that alternates between consecutive 
even-numbers. The OTR response to 2 % pump speed changes were 
captured by the OTRRLS algorithm as slope changes, shown in Fig. 4A. As 
the predefined exponential profile was set to be 0.28 h− 1, the feed rate is 
considered to be below the maximum TCA cycle flux of 0.30 h− 1 (Xu 
et al., 1999). At this point in the culture, the cells were in the oxidative 
metabolic state for pump speeds of 16 % and 18 %. Consequently, small 
changes in the glucose flux, controlled by the glucose feed pump flow 
rate, resulted in OUR changes due to the TCA cycle, and these OUR 
changes are detected as OTR changes. In the present work, OUR is 
essentially equal to OTR because the magnitude of the dCL/dt term in Eq. 
(7) is very small in comparison to OUR and OTR. In the following 

Fig. 2. Growth and glucose feed rate profiles for the constant and perturbed 
exponential fed-batch recombinant E. coli fermentations. A) Cell density (OD); 
B) feed pump rate (% of maximum speed, where 100 % equals 20 mL/min). The 
first fermentation used a constant predefined exponential feed rate to control 
the culture growth rate to 0.28 h− 1. The fed-batch phase began at 9 h with 
induction at 13 h. Antifoam additions are indicated by the purple triangles 
above panel A. The second fermentation used a predefined exponential feed 
rate to control the growth rate to 0.28 h− 1; however, large glucose flow rate 
changes were used to perturb the culture. The fed-batch phase began at 12.4 h 
with induction at 15 h. Antifoam additions are indicated by the purple triangles 
(constant) or orange diamonds (perturbed) above panel A. 
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discussion, we will treat OTR and OUR as equal. That is, an increase in 
OUR is associated with an equal increase in OTR, and vice versa. When 
the glucose feed pump was increased from 16 % to 18 % at 15.42 h, the 
OTRRLS increased immediately until the glucose pump flow rate was 
decreased. When the glucose pump feed flow rate was decreased from 
18 % to 16 % at 15.44 h, OTRRLS decreased due to OUR decreasing. 

Fig. 3. OTR response for the constant exponential fed-batch culture. A) OTR 
estimated using the RLS-OTR algorithm which accounts for latency and filtering 
effects (OTRRLS) and OTR estimated using the modified global mass balance 
method (OTRavg). B) Glucose feed pump flow rate; C) Inlet (y0) and off-gas 
sensor (y3) oxygen concentrations; D) Dissolved oxygen (DO); and E) stir 
speed. The fed-batch phase began at 9 h and induction occurred at 13 h. 
Antifoam additions occurred at 17.15, 19.8, and 20.2 h, and these times are 
indicated by purple triangles above panel A. The grey boxes highlight the times 
to be presented in Figs. 4 and 5. 

Fig. 4. OTR responses to small glucose flux variations for the constant expo-
nential fed-batch culture. A) OTR estimated using the RLS-OTR algorithm 
which accounts for latency and filtering effects (OTRRLS) and OTR estimated 
using the modified global mass balance method (OTRavg). B) Glucose feed pump 
flow rate; C) Inlet (y0) and off-gas sensor (y3) oxygen concentrations; D) Dis-
solved oxygen (DO); and E) stir speed. To approximate 17 % feeding, the pump 
was dithered between 16 % and 18 %, as the controller was only capable of 
even numbered intervals. The vertical dashed lines indicate when the glucose 
feed pump flow rate was increased and the dotted line indicates when the 
glucose feed pump flow rate was decreased. 
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These OTR responses confirm the culture was in oxidative metabolism. 
The OTRavg method noticeably lags the pump flow rate changes, which 
would confound OTR being used for feed control, as the likelihood of 
overfeeding is possible during the lag. The RLS-OTR algorithm demon-
strated its capability to detect small OUR changes for cultures in an 
oxidative metabolic state. 

Since high-cell density E. coli cultures require air enrichment with 
oxygen to maintain acceptable DO values, an OTR estimator must have 
the capability to provide accurate estimates across oxygen concentration 
step changes. Fig. 5 shows the OTR, glucose feed pump flow rate, and 
inlet and outlet oxygen concentrations from 16 to 17.5 h for the constant 
exponential feed fermentation. At this scale, the close alignment of the 
glucose pump and the inlet oxygen concentration changes can be 
observed. For the first inlet oxygen concentration step change at 
approximately 16.1 h, there was a coinciding glucose pump flow rate 
decrease. Yet, the OTRRLS profile quickly responded and adjusted to the 
inlet gas concentration change and decreased due to the lower glucose 
flux. In contrast, the OTRavg profile dramatically increased (over-
shooting by 5-fold) and took approximately 6 min to stabilize. 

Additionally, the glucose flow rate changes between 16.3 and 16.4 h 
were captured by the OTRRLS algorithm, whereas the OTRavg method 
resulted in a lagged profile. Further, the 2nd and 3rd inlet gas concen-
tration step changes also resulted in overshooting and delayed behavior 
for the OTRavg method, while the OTRRLS algorithm was responsive to 
the glucose flux variations. Thus, the OTRRLS algorithm is capable of 
accurate OTR predictions across inlet oxygen concentration step 
changes. 

Cultures in overflow metabolism would not have observable OUR 
changes due to sudden increases or decreases in the glucose flow since 
the TCA cycle is saturated (Korz et al., 1995). For glucose pump flow rate 
decreases to elicit an OTR response, excess glucose must first be 
consumed, such that the glucose flux falls below the maximum TCA 
cycle flux (Carneiro et al., 2013; Korz et al., 1995; Pepper et al., 2014; 
Wang et al., 2014). This overflow phenomena would be observed as a lag 
in the OTR response following a glucose flux decrease. Only once the 
cells consume all the excess glucose, the OUR will decrease, observed as 
a OTR decrease under control DO. The perturbed exponential feed 
fermentation was conducted to characterize the RLS-OTR algorithm 
response to a shift from overflow to oxidative metabolic states. OTR 
profiles calculated by the RLS-OTR algorithm and global mass transfer 
equation (OTRavg) are shown in Fig. 6 for the entire fermentation. The 
glucose feed pump flow rates are shown, as the glucose flux directly 
impacts the metabolic state of the culture. Also, y0, y3, DO, and stir 
speeds are shown in Fig. 6, as these are used in the RLS-OTR algorithm, 
and y0 and y3 are used by the OTRavg method. The minimum oxygen 
enrichment was set to 20 % to eliminate the oscillation in b0 encoun-
tered during the constant exponential feed fermentation. At first glance, 
the OTRavg values appear more stable than those from the RLS-OTR 
algorithm; however, the closer examination shows that the OTRavg es-
timate is filtering out important culture dynamics. 

To evaluate the RLS-OTR algorithm under a metabolic shift, the 
glucose feed pump flow rates were varied for the constant exponential 
feed profile setpoints. The small glucose flux variations used were be-
tween 15 and 20 h failed to put the culture into overflow metabolism. 
The larger glucose flux variation after 20 h were able to cause overflow 
metabolism. In order to visual these OTR responses, Fig. 7 highlights the 
time period from 22 to 22.6 h. The culture remained in oxidative 
metabolism during an initial glucose flux step increase at 22.08 h. The 
subsequent glucose flux step increase at 22.17 h pushed the culture into 
overflow metabolism, as observed in the OTRRLS response by the flat 
(saturated) profile. When the glucose feed pump flow rate was decreased 
at 22.26 h, the OTRRLS profile remained elevated, indicating that the 
TCA cycle remained saturated. Then at 22.3 h, the OTRRLS profile 
decreased, indicating the excess glucose had been consumed and OUR 
was decreasing. The next glucose pulse at 22.34 h caused OTRRLS profile 
to increase, and overflow metabolism was reached by 22.42 h, as indi-
cated by the flat OTRRLS profile. When the glucose feed pump flow rate 
was decreased at 22.5 h, the culture was again in overflow metabolism 
until 22.58 h, at which time the excess glucose was consumed and 
OTRRLS decreased. For OTRavg method, it was not possible to clearly 
define these metabolic phase shifts, as the OTRavg responses lagged the 
glucose flux changes by ≥ 3 mins. 

It is well-accepted that expression of a recombinant protein causes a 
metabolic burden. In the dynamic method for kLa estimation, it is 
assumed qO2 is a constant (Bandyopa and Humphrey, 1967; 
Martinez-Monge et al., 2019; Pappenreiter et al., 2019). The metabolic 
assessment capability gained by the RLS-OTR algorithm to measure OTR 
in real-time can allow for qO2 to be assessed as well. The qO2 profiles 
obtained for the constant and perturbed exponential feed cultures were 
obtained by dividing OTRRLS by the predicted biomass. The predicted 
biomass was modeled as an exponential function to fit the off-line cell 
density measurements. Fig. 8 shows the qO2 value profiles for these two 
fermentations, post-induction. For both fermentations, the qO2 values 
ranged between 0.06 and 0.3 g O2/g cell⋅h and increased post-induction 
with very similar profiles. Literature ranges for E. coli are between 0.32 

Fig. 5. OTR responses to oxygen enrichment for the constant exponential fed- 
batch culture. A) OTR estimated using the RLS-OTR algorithm which accounts 
for latency and filtering effects (OTRRLS) and OTR estimated using the modified 
global mass balance method (OTRavg). B) Glucose feed pump flow rate; C) Inlet 
(y0) and off-gas sensor (y3) oxygen concentrations. The vertical dashed line 
indicates an example where the glucose feed pump flow rate was increased and 
the dotted line indicates an example where the glucose feed pump flow rate was 
decreased. The vertical red lines indicate when the oxygen enrich-
ment increased. 
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and 0.38 g O2/g cell⋅h (Shuler et al., 2017); however, it is not clear if 
these literature cultures were under glucose feed control or what media 
was used. Glucose limited cultures would have lower qO2 values 
compared to cultures grown with excess glucose; cultures in rich media 
would have higher qO2 values. For fed-batch E. coli, qO2 has been 
observed to range from 0.019 to 0.16 g O2/g cell⋅h for recombinant, but 

Fig. 6. OTR responses for the perturbed exponential feed culture. A) OTR 
estimated using the RLS-OTR algorithm which accounts for latency and filtering 
effects (OTRRLS) and OTR estimated using the modified global mass balance 
method (OTRavg); B) Glucose feed pump flow rate; C) Inlet (y0) and off-gas 
sensor (y3) oxygen concentrations; D) Dissolved oxygen (DO); and E) stir 
speed. To approximate 17 % feeding, the pump was dithered between 16 % and 
18 %, as the controller was only capable of even-numbered intervals. The fed- 
batch phase began at 12.4 h and induction occurred at 17 h. Antifoam additions 
occurred at 19.8, 21.2, and 21.8 h, and these times are indicated by diamonds 
above panel A. The grey box highlights the time to be presented in Fig. 7. 

Fig. 7. OTR responses to shifts between oxidative and overflow metabolic 
states for the perturbed exponential fed-batch culture. A) OTR estimated using 
the RLS-OTR algorithm which accounts for latency and filtering effects 
(OTRRLS) and OTR estimated using the modified global mass balance method 
(OTRavg). B) Glucose feed pump flow rate; C) inlet (y0) and off-gas sensor (y3) 
oxygen concentrations; D) Dissolved oxygen (DO); and E) stir speed. The feed 
rate was purposely pulsed up and down to characterize the OTR response to 
overflow and oxidative metabolism. The vertical dashed lines indicate when the 
glucose feed pump flow rate was increased and the dotted line indicates when 
the glucose feed pump flow rate was decreased. 
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uninduced E. coli (Lin et al., 2001). Several models have been developed 
for oxygen consumption by E. coli (Anane et al., 2017; Seidel et al., 2021; 
Zeng and Yang, 2019), yet none these studies accounted the effects of 
the metabolic burden associated with recombinant protein expression 
on qO2. The increasing post-induction qO2 values observed in this work 
indicate that the metabolic burden was increasing, as cells required 
higher amounts of oxygen under a steady growth rate. The RLS-OTR 
algorithm will allow for qO2 to be evaluated in real-time, where dy-
namics due to feed rates and associated metabolic burden can be 
characterized. 

The relationship between kLa and stir speed is shown in Fig. 9 for 
both cultures. Each data point represents the calculation of kLa gener-
ated using the α0 and α1 estimates. The relationship between the esti-
mated kLa and stir speed changes over the course of the fermentation, so 
kLa is different for the same stir speed at different times in the fermen-
tation. Also, the slope of the kLa versus stir speed shifts throughout the 
fermentations. This shift in kLa is due to many culture events, such as cell 
secretion build-up, base addition accumulation, dissolved gases, anti-
foam additions, and submersion of additional impellers, all of which are 
difficult to quantify in real-time. It is clearly visible for the constant feed 
fed-batch cultures that the kLa-stir speed relationship was different 
before and after induction, as shown by the red to orange colored data 
points (Fig. 9A). Additionally, despite these cultures being well matched 
with respect to growth rates and cell density, the on-line estimator in-
dicates that the kLa was significantly different even 1–2 h post- 
induction, as shown by the unequal kLa values in green hues. At later 
times post-induction, the kLa values are more similar (purple hues), most 
likely due to the combination of base and antifoam additions. Interest-
ingly, the perturbed fed-batch culture kLa and stir speed have several 
excursions off a linear relationship (Fig. 9B). These excursions corre-
spond in time to the occurrence of high or low glucose flow rates. If the 
van’t Riet equation were used only, for example, these curves would be a 
single line (Van’t Riet, 1979). The RLS-OTR algorithm on-line estimator 
allows for calculation of kLa without separately quantifying all the in-
puts that effect the kLa. Further, the RLS-OTR algorithm for kLa esti-
mates is sensitive to culture changes, which will make it a value tool for 
closed-loop feed control. 

5. Conclusions 

An RLS-OTR algorithm was developed and used to estimate kLa and 
OTR on-line and in real-time using standard industrial sensors, i.e., DO 

and off-gas. A first-order model of gas mixing was coupled to the sensor 
dynamics, the inlet gas concentration and DO measurements. This 
resulted in a linear set of equations that could be estimated using a least- 
squares technique. The RLS-OTR algorithm was able to account for la-
tency and filtering effects that occur between the inlet oxygen and the 
off-gas oxygen measurements. This resulted in an accurate, generaliz-
able method to estimate OTR on-line and in real-time. 

The RLS-OTR algorithm was compared to the OTRavg, the global mass 
balance method for estimating OTR. The algorithms were challenged by 
small and large glucose feed rate variations. Additionally, the effects of 
step changes to the inlet oxygen sparge were evaluated. It was observed 
that the RLS-OTR algorithm was responsive to small glucose flux vari-
ations when the culture was in an oxidative metabolic state. In contrast, 
OTRavg had noticeable lags. The global mass balance equation uses only 
the inlet and off-gas oxygen concentrations to estimate OTR, a slight 
modification of the global mass balance method (Martinez-Monge et al., 
2019), and thus lacks the capability to account for latency and filtering 
effects. The effects of filtering and latency become more pronounced and 
problematic in systems with larger headspaces and greater distances 
between the fermenter and the off-gas sensor. Conversely, the RLS-OTR 
method was able to account for headspace volume or distance between 
fermenter to off-gas sensor. Thus, the RLS-OTR algorithm could be 
implemented in large production vessels with a shared off-gas sensor. 

The kLa and stir speed relationship was determined to be variable, 
which was expected; nonetheless, the real-time kLa estimator was able to 
adjust throughout the fermentation, unlike the van’t Riet correlation. As 
it is well-documented that kLa depends on many factors that change 
during a fermentation beyond geometry, such as viscosity, impeller 

Fig. 8. Cell specific oxygen uptake rates (qO2) the constant and perturbed 
exponential fed-batch recombinant E. coli fermentations. The qO2 values were 
determined from the OTR and biomass concentrations for the fermentations 
post-induction. Antifoam additions are indicated by the purple triangles (con-
stant) or orange diamonds (perturbed) above panel A. 

Fig. 9. Relationship between kLa and stir speed for fed-batch cultures. The 
rings in the upper right depict fermentation time by color, clockwise. The black 
line on the ring indicated the time of induction. The colors post-induction are 
align for the two different feeding strategies. A) Constant exponential fed-batch 
culture. For the constant exponential cultures, the smaller wedges represent 
15 min intervals and the larger wedges represent 30 min intervals. B) Perturbed 
exponential fed-batch culture. For the perturbed culture, all wedges represent 
30 min intervals. 
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geometry, amount of soluble material in the media, antifoam additions 
etc. (Aroniada et al., 2020; Campbell et al., 2020), a dynamically 
updated kLa estimator is desired. While it is difficult to directly relate the 
changes seen in these experiments to any one factor, this study clearly 
shows the shift in the kLa-stir speed relationship over the course of the 
fermentations (Fig. 9). The feed pulse fermentations demonstrated that 
the RLS-OTR algorithm is capability of producing a real-time signal that 
contains information about the metabolic state of the culture. Infor-
mation regarding the metabolic state of the culture would allow for 
improved feed control and lower waste product build up. Accordingly, 
the RLS-OTR algorithm in the future would be integrated into a feed 
control algorithm. 
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