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A B S T R A C T

Experimental data is often comprised of variables measured independently, at different sampling rates (non-
uniform 𝛥𝑡 between successive measurements); and at a specific time point only a subset of all variables may be
sampled. Approaches to identifying dynamical systems from such data typically use interpolation, imputation
or subsampling to reorganize or modify the training data prior to learning. Partial physical knowledge may also
be available a priori (accurately or approximately), and data-driven techniques can complement this knowledge.
Here we exploit neural network architectures based on numerical integration methods and a priori physical
knowledge to identify the right-hand side of the underlying governing differential equations. Iterates of such
neural-network models allow for learning from data sampled at arbitrary time points without data modification.
Importantly, we integrate the network with available partial physical knowledge in ‘‘physics informed gray-
boxes’’; this enables learning unknown kinetic rates or microbial growth functions while simultaneously
estimating experimental parameters.
1. Introduction

Dynamical systems arise in all areas of science and engineering,
from spatiotemporally chaotic or turbulent flows to transient chemical
reactor dynamics, complex biological systems, infectious disease mod-
els and beyond. These dynamical systems obey fundamental physical or
mathematical governing laws, certain components of which may not be
known a priori, or may only be known approximately: we may have a
known functional form but lack certain parameter values (e.g. kinetic
constants); or alternatively, we may not even exactly know the right
functional form (e.g. the right kinetics). System identification is the
science of using experimental data to extract information/knowledge
about the underlying dynamical system or possibly to deduce a useful
surrogate model; such models can be used for prediction, extrapolation
of the system behavior beyond the training data range, optimization
of its performance, or for controlling it to a desired setpoint. This is
of course an established and rich branch of systems theory, with many
successful applications; yet the recent explosion in machine learning
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algorithms has caused a resurgence of interest in several issues arising
when learning models from time-series data—including the lack of
interpretability, ability to successfully generalize, and missing data and
partial observations.

Many applications of neural ordinary differential equations (Neu-
ral ODEs) and Recurrent Neural Networks (RNNs) focus on learning
functionals of entire time-series sequences, e.g. classification of ECG
signals to heartbeat types (Saadatnejad et al., 2020; Yildirim, 2018).
In this paper our focus is on learning autonomous dynamical systems
from partial information, although our approach can be extended to
non-autonomous systems.

Before starting, we state here our definitions for certain terms as
used in this work: (a) Full Observations: At each sampling time, all
relevant dependent variables are measured; (b) Partial Observations:
At each sampling time, a subset of the variables is measured; (c) Hidden
Variables: some variables are never measured at any time; (d) Data 𝛥𝑡
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is the time interval between successive sampling times; (e) Learning
𝛿𝑡 is our estimate of an integration time step long enough to be useful,
but also short enough to be accurate; (f) Fixed Frequency Sampling:
Variables are sampled at a consistent sampling frequency (Data 𝛥𝑡 is
fixed); and (g) Variable Frequency Sampling: Variables are sampled
at arbitrary sampling frequencies (Data 𝛥𝑡 is variable).

System identification is traditionally a data-driven process—using
mathematical, statistical or machine learning techniques on input–
output data to extract information about the underlying system laws.
This branch of systems theory has a long history, from the celebrated
Kalman filter (Kalman, 1960) (a linear method); non-linear variants
such as the extended Kalman filter (Ljung, 1979), the unscented Kalman
filter (Wan and Van Der Merwe, 2000), and the particle filter (Gordon
et al., 1993); to new techniques such as neural networks (Nelles, 2001;
Wang, 2017; Kuschewski et al., 1993; Chen et al., 1990; Hudson et al.,
1990; Rico-Martinez et al., 1992). Empirical data, however, while being
an essential component of the task, is not the only source of information
typically available about the systems of interest. Governing equations,
conservation laws, symmetries, physical theories and/or models, even
when imperfect or incomplete, also constitute crucial pieces of informa-
tion. In our work here we endeavor to take into account all such sources
of information, developing a hybrid gray-box model that combines
black-box data driven techniques with white-box physics models.

Related approaches are becoming increasingly successful (and pop-
ular in recent literature), for example through Physics-Informed Neural
Networks (PINNs) (Raissi et al., 2017) where physical knowledge, often
in the form of partial differential equations (Raissi et al., 2019)—
possibly with unknown parameters, or even with unknown opera-
tors (Lu et al., 2021)—is enforced while using deep-learning tech-
niques. However, PINNs are typically used to find solutions consistent
with a fully known underlying governing ODE/PDE; our approach
centers around using known physically relevant solutions (experimental
data) to identify (parts of) the underlying system itself. While the term
‘‘PINN’’ has come to refer to the forwards (problem solution) task,
simultaneous work (Raissi et al., 2017) also considered the inverse
identification task, albeit without gray-box structure. This was then
followed by much more general operator-learning work (Lu et al.,
2021), in which general functional operators are learned, including
integration; older versions of this operator-learning tasks can be found
for example in González-García et al. (1998). Performing such a ‘‘black
box’’ task using machine learning, and, in particular, neural networks is
a research direction that started in the late 1980s and early 1990s (Far-
ber et al., 1993; Rico-Martinez et al., 1992; Purwar et al., 2007), and
has been rejuvenated and much more widely used with the advent
of neural ODEs or ODE-Nets (Chen et al., 2018; Krishnapriyan et al.,
2022).

When partial information about the right-hand-side of the under-
lying differential equations is known, the ‘‘gray-box’’ version of this
identification process uses the expressivity of neural networks to cor-
rect for incompleteness or inaccuracies of partially/approximately known
physical models, or to impose additional structure or known global
laws or constraints. These corrections can be performed in an additive
(e.g. Rico-Martinez et al. (1994), Lee et al. (2022), Kemeth et al. (2022),
Menesklou et al. (2021), Thompson and Kramer (1994), Shi et al.
(2019)) or multiplicative (e.g. Lovelett et al. (2020), Chen et al. (2000))
manner, or the neural network can be integrated with physics in a
functional manner (e.g. Kemeth et al. (2022), Psichogios and Ungar
(1992), Hagge et al. (2017), De Veaux et al. (1999), Oliveira (2004),
Van Can et al. (1997)).

In this paper we will focus on identifying both missing parameters
and missing functional terms: known governing principles such as
mass/energy balances or couplings are imposed by the formulation, and
the black-box neural network learns physically relevant functions such
as microbial growth rates or chemical reaction rates, and simultane-
ously estimates possibly unknown parameter values. Note that this is
2

in contrast to methods such as Hamiltonian Neural Networks (Bertalan t
et al., 2019; Greydanus et al., 2019) where a structural feature of the
dynamics (symplecticity, or their Hamiltonian nature) is imposed in
ddition to the demand for accurate prediction.

In placing our work in the context of current literature, we consider
istinct categories of analogous efforts: first those that are focusing on
lack-box models trained on data with missing or partial information;
econd on black-box models trained on data at variable sampling rates;
nd last, those that are focusing on partially known physics (gray-box
odels).

Black Box Models trained on data with missing or partial in-
ormation. Measurements of experimental data often are not available

in a format ideal for data-driven prediction/learning. Sensors may not
operate at regular intervals, manually sampled data may also not be
available at regular intervals, and some data points may be corrupted
by external noise. This results in a dataset that is sampled at variable
frequencies. Furthermore, different sensors may operate at different
sampling rates; and at each sample point only some analyses may be
run. This results in a dataset with partial observations—where at each
sample point, only a subset of all variables are measured.

To make such training data conducive to statistical analyses and
machine learning, pre-processing is often performed; this may be as
simplistic as omitting the ‘‘anomalous’’ datapoints (Lyngdoh et al.,
2022), but more often some form of imputation is involved. This
could can be linear-interpolation or a ‘‘last observation carried for-
ward’’ approach (Gelman and Hill, 2006; Oluwaseye et al., 2022),
may involve more robust smoothing techniques such as polynomial or
LOESS smoothing (locally estimated scatterplot smoothing) (Honaker
and King, 2010), machine learning techniques such as expectation
maximization (Nelwamondo et al., 2007), k-nearest neighbors (Bertsi-
mas et al., 2021; Silva-Ramírez et al., 2015; Oluwaseye et al., 2022;
Lyngdoh et al., 2022) or artificial neural networks (Silva-Ramírez et al.,
2015; Nelwamondo et al., 2007) for smoothing and imputation.

Methodologies that impute missing data first and train a model on
the cleaned dataset second often reinforce the imputed values as if they
were true: ‘‘if you fill the holes in the cheese with peanut butter, you
should not pretend to have more cheese!’’ (Honaker and King, 2010).
This can be mitigated by conducting imputation and model training
simultaneously : using the model to impute missing data, further training
the model using the data (but not including the loss at the imputed (not
ground-truth) values); using the improved model to impute again, and
iterating.

Black Box Models trained on data sampled at variable time
points. To train on data sampled at variable sampled time points, we
need a method that can naturally allow for arbitrary time stepping.
The simplest supervised learning approach involves learning a direct
mapping between the current state 𝑥(𝑡) and the state 𝑥(𝑡+𝛥𝑡) at a time
𝑡 in the future, but this method either requires training on data that is
ampled at regular 𝛥𝑡 intervals, or requires the 𝛥𝑡 itself also be an input
f the network (Fig. 1(a)). An alternative (and in our opinion more
lexible) approach consists of recognizing that the underlying systems
an be represented as differential equations in continuous time. Hence,
f we instead have the neural network learn the form of the right hand
ide of a differential equation system, we can leverage well-established
umerical integrator methods to generate predictions at any desired
ime point (Fig. 1(b)). This method was proposed in the literature as
ar back as the 1990’s (Rico-Martinez et al., 1992; Rico-Martinez and
evrekidis, 1993) and has been extended and popularized in recent
ork through neural ODEs (Chen et al., 2018). This recent work in
eural ODEs has allowed for compatibility with built-in, robust numer-

cal integrators in Python, with gradients calculated using the adjoint
ethod rather than unrolling, and packages such as torchdiffeq (Chen,
018) and diffrax (Kidger, 2022) have become publicly available.

Neural ODEs also provide a natural way of simultaneously learning
nd imputing, where the imputation is done with the time-evolution
odel and dynamically changes in every iteration as the model is
rained. Neural ODEs have been successfully used on data with irregular
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Fig. 1. Comparison of different RNN types. (a) Direct prediction methods typically force the network into a fixed 𝛥𝑡, which prompts the resampling, interpolation, or imputation
of data that do not happen to be sampled at this 𝛥𝑡. (b) Incorporating the neural network in a numerical integrator template with a 𝛥𝑡 input naturally allows for prediction at
varying 𝛥𝑡 values. (c) Restricting the max solver 𝛿𝑡 hyperparameter forces the network to take multiple steps if data 𝛥𝑡 is large. (d) We explore both teacher-forcing, where real
data is used as input when available, and autoregression, where predictions are fed back into network for the next prediction. During training on partial observations, elements
of both teacher forcing and autoregression are used, while during inference, autoregression is used, starting from a known initial condition.
time series by Rubanova et al. (2019); in this work, we ‘‘open up’’ the
Neural ODE approach by explicitly templating the neural network on
a 4th order Runge–Kutta (RK4) integrator in PyTorch (Rico-Martinez
et al., 1992) (Fig. 2). In our work the training gradients are computed
by unrolling, rather than through the adjoint method.

Gray Box Models — Learning from data with some physics
known. Various previous works in the literature have touched on
different combinations of missing data characteristics. Rubanova et al.
along with using a neural ODE to learn on irregularly-sampled time
series data, also demonstrated learning from data with completely hid-
den variables (Rubanova et al., 2019)—but they do not consider partial
observations. They operate on a latent representation that makes gray-
boxing difficult, since latent variables need not have straightforward
physical interpretations.

Kidger et al. (2020) extend neural ODEs to neural controlled dif-
ferential equations (neural CDEs), which they view as ‘‘the continuous
analog of RNNs’’ in the same way ‘‘neural ODEs are the continuous
analog of ResNets’’ (Kidger et al., 2020). This method focuses on non-
autonomous dynamical systems, motivated by rough path theory that
views stochastic processes as ‘‘deterministic equations for a fixed choice
of driving path’’ (Davie, 2008). They demonstrate the neural CDE
methodology on a variety of classification tasks rather than system
identification from time-series. While their application is very different
from the one in this paper, we highlight their approach of using
the neural CDE framework for training on irregular time series, and
use of channel-specific observational frequency for training on partial
observations.

Buisson-Fenet et al. (2022) give a simple demonstration of integrat-
ing neural ODEs with prior knowledge to produce a particular type of
hybrid gray-box methods for system identification; here the physical
knowledge is given in the form of known kinetic equations while the
neural network learns a system parameter (the unknown frequency).
In contrast, in our work, the neural network learns physically relevant
3

functions, such as microbial growth rates or chemical reaction rates,
alongside unknown values of fixed experimental parameters. In addi-
tion to working with a spectrum of gray-box models by incorporating
prior information, a key contribution of Buisson-Fenet et al. (2022) is
the use of a synchronized dynamical system based on the (Kazantzis-
Kravaris-Luenberger) KKL observer theory to impute missing initial
conditions. This addresses training on data with hidden variables, but
not with partial observations, as in the current work. Approaches
using kernel methods—rather than neural networks—have also been
proposed (Bouvrie and Hamzi, 2017; Hamzi and Owhadi, 2021) for
learning dynamical systems or for predicting missing initial conditions
of LSTM latent dynamics (Kemeth et al., 2021).

The remainder of the paper is organized as follows: Having provided
the definitions of the terms we use above, we start by summarizing the
key concepts underpinning our approach and the algorithm. We demon-
strate our approach first on a well-established illustrative model—the
autonomous stirred tank reactor (Uppal et al., 1974); where we incre-
mentally build on the complexity of the training data used to learn the
model. We then proceed to a more complex system—a 6-dimensional
biological kinetics model involving three microbial species growing in
co-culture and exhibiting autonomous oscillations (Baltzis and Freder-
ickson, 1984). In both systems, we demonstrate how gray-boxing may
be used to both estimate unknown parameters and simultaneously learn
unknown dynamics. We conclude with a summary of our observations,
and a discussion of the scope of the approach and of its strengths and
weaknesses.

2. Methodology

ODE-nets for learning with arbitrary time sampling. In order for
the neural network to learn the right-hand-side (RHS) of a system of
ODEs (rather than learning to directly predict the output in discrete
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𝑥

Fig. 2. A black box neural network model with a fourth order Runge–Kutta numerical
integrator.

time), it is convenient if the network architecture has been templated
on an established numerical integrator framework (Fig. 1(a), Fig. 1(b))
as a ‘‘fusion’’ of neural networks with traditional numerical analysis
which we call ODE-nets (but may also be referred to in literature as
Neural ODEs (Chen et al., 2018)). In this work we explicitly tem-
plate the neural network on a 4th order Runge–Kutta (RK4) (Eq. (1),
Fig. 2).

̂̇𝐱 =  (𝐱(𝑡),𝐩; 𝜃) (1a)

𝐤1 =  (𝐱(𝑡),𝐩; 𝜃)

𝐤2 =  (𝐱(𝑡) + 𝐤1
(𝛥𝑡
2

)

,𝐩; 𝜃)

𝐤3 =  (𝐱(𝑡) + 𝐤2
(𝛥𝑡
2

)

,𝐩; 𝜃)

𝐤4 =  (𝐱(𝑡) + 𝐤3 (𝛥𝑡) ,𝐩; 𝜃)

�̂�(𝑡 + 𝛥𝑡) = 𝐱(𝑡) +
(𝛥𝑡
6

)

(𝐤1 + 2𝐤2 + 2𝐤3 + 𝐤4)

(1b)

We know from numerical analysis that, generally speaking, the
forward error in integrating a known equation improves as step size
decreases, motivating the development of adaptive-stepsize integration
schemes. Likewise, it can be shown that the backwards error, the
inaccuracy in discovering an equation from assumed-true trajectory
data, also improves as step size decreases (Zhu et al., 2022). As such,
we control the time steps the RK4 integrator takes in order to maintain
the precision of the solver, such that multiple iterations through the
network may be needed to obtain a prediction at the next observation
time step (Fig. 1(c)).

We also note two differing approaches to training: teacher-forcing
and autoregression (Fig. 1(d)): teacher forcing was first introduced
in the context of recurrent networks for temporal supervised learn-
ing (Williams and Zipser, 1989; Pineda, 1988) and involves replacing
the output of the network with the true data (teacher signal), when
available, for subsequent iterations. This approach allows for faster
convergence of the model during training, particularly during earlier
iterations (Benny Toomarian and Barhen, 1992). In contrast, autore-
gressive training involves feeding the outputs of the network back as
the input for the next iteration to yield a full temporal trajectory (Chen
et al., 2018). Previous literature has suggested that a balance between
the two is optimal (Benny Toomarian and Barhen, 1992), and we take
this into account in our training methodology (Fig. 4).

Gray-Boxing for data-driven learning with some physics known.
We aim to develop and implement a neural-network based training
4

methodology amenable to coupling with known, ‘‘white-box’’, physi-
cal knowledge, and capable of learning from training data sets with
variable sampling times and partial observations. Both of these require-
ments can be addressed by formulating the training problem as the
learning of the RHS of a system of ODEs. Often, established physical
knowledge is expressed in terms of differential equations in space and
time (chemical or microbial kinetics, convection, diffusion, etc.). Ex-
pressing the dynamics in the form of differential equations imposes the
right inductive bias during the neural network model training to cap-
ture the continuous nature of these dynamical systems (Krishnapriyan
et al., 2022); and it naturally allows the neural network training to
incorporate existing partial physical knowledge. The methods can be
extended to PDEs and even SDE/SPDEs (Dietrich et al., 2021; Psarellis
et al., 2022), but that is beyond the scope of this paper.

In a simple black-box model, the neural network will have the full
onus of learning the law governing the system dynamics:

̂̇𝐱 = BB(𝐱; 𝜃) (2a)

Alternatively, previously available physical knowledge, which may
be incomplete and/or imperfect, may be included in the model frame-
work, so that the neural network is tasked with learning only the
unknown parameters/dynamics, or possibly a correction to imperfectly
known dynamics. This inclusion can be corrective (either additive
(Eq. (2b)) or multiplicative (Eq. (2c))); or it could be a function
composition (Eq. (2d)).

̂̇𝐱 = 𝑓WB(𝐱;𝐩) +BBAdd
(𝐱; 𝜃) (2b)

̂̇𝐱 = 𝑓WB(𝐱;𝐩) ⋅BBMult
(𝐱; 𝜃) (2c)

̂̇𝐱 = 𝑓WB(𝐱,BBFunc
(𝐱; 𝜃)) (2d)

We can also combine corrective gray-boxes and function composi-
tion gray-boxes (Eq. (3), Fig. 3)

𝜙 = 𝑓𝜙(𝐱;𝐩𝐟 , 𝜃) =
{

𝑓WB(𝐱;𝐩𝐟 ) +BBAdd
(𝐱; 𝜃) Additive

𝑓WB(𝐱;𝐩𝐟 ) ⋅BBMult
(𝐱; 𝜃) Multiplicative

(3a)

̂̇𝐱 = 𝑔WB(𝐱, 𝜙;𝐩𝐠) (3b)

where 𝑓𝜙 are constitutive relations, or functions modeling kinetic or
microbial rates, for which we may have a priori postulates 𝑓WB. The
neural network learns a correction for any imperfections or incomplete-
ness in 𝑓WB, or learns the entire 𝑓𝜙 if there are no a priori postulates. 𝜙
and 𝑥 are inputs to another white box model 𝑔WB which strictly imposes
inviolable physical laws, such as conservation laws or other global laws
we may want to impose, such as a coupling between reaction rate and
the heat of reaction. Note that here, the white box parameters 𝐩𝐟 and
𝐩𝐠 can either be fixed a priori, or, if sufficiently identifiable given the
data, they can be included as additional training parameters to be fit
simultaneously with the learning of the neural network parameters 𝜃.

In our approach, we focus on function composition, where the
neural network handles the task of learning the unknown microbial
or kinetic rates, and the architecture consists of a white-box structure
imposing known physical couplings (e.g. between reaction rate and
reactive heat generation, or microbial growth and substrate consump-
tion/product formation (Eq. (4)).

𝜙 = BB(𝑥; 𝜃) (4a)

̂̇ = 𝑔WB(𝑥, 𝜙; 𝑝𝑔) (4b)



Computers and Chemical Engineering 178 (2023) 108343S. Malani et al.
Fig. 3. Network architecture for black and gray box models. In the black box model, the entire onus for learning the RHS is on the neural network. In the gray-box model,
physical information is incorporated through constitutive terms or known microbial and reaction rates, and global and conservation laws.
Fig. 4. Training algorithm and batching. (a) Systematically record each trajectory of training data. (b) Determine the key time points for each trajectory; key time points are
where at least one feature is measured and hence a loss will be computed at these time points. (c) Determine solver time points. No loss is computed at these time points, these
are included to ensure stability and accuracy of the numerical integrator. (d) Generate predictions by integrating through each trajectory in time; (i) teacher-forcing is used when
real data is available for a feature, and if not predictions are generated autoregressively. In this paper this approach is used during model training ; (ii) model predictions are
generated purely autoregressively, starting from a given initial condition. This paper uses this approach during inference time. For training, compute loss at the key-time points for
each trajectory, back-propagate to compute gradients and perform gradient descent to train the network.
Training algorithm and batching. The training algorithm is summarized
in Fig. 4. Within each training trajectory, key time points (where
the loss is calculated), and solver time points (included for stability
and accuracy of the templated numerical integrator) are marked, and
predictions are generated (with the current vectorfield estimate) by
iterating in time through each trajectory. Each training trajectory may
have different key and solver time points, and may also be of differing
length. To include multiple trajectories in the same training minibatch,
a sequence of evaluation time points is included alongside the data
input, and padding is added to make all data and time sequences the
same length. This allows for simultaneous training on minibatches of
data trajectories.

Loss function and error metrics. For the loss function, a mean
squared error (MSE) loss is taken between the model predicted tra-
jectory and the ground truth data at the time points at which data is
5

available:

𝐿 = 1
𝑁data

∑

𝑖∈trajectories

∑

𝑗∈times𝑖

∑

𝑘∈channels(𝑖,𝑗)
(�̂�(𝑘)𝑖 (𝑡𝑗 ) − 𝑦(𝑘)𝑖 (𝑡𝑗 ))2. (5a)

𝑁data =
∑

𝑖∈trajectories

∑

𝑗∈times𝑖

‖channels(𝑖, 𝑗)‖ (5b)

Here, channels(𝑖, 𝑗) is the set of channel indices observed in trajectory 𝑖
at times 𝑗. Refer to Appendix A.2 for details on metrics used to evaluate
model performance.

3. Results

Our first illustrative example uses data from simulations of the
non-isothermal CSTR model in the classical chemical engineering liter-
ature (Uppal et al., 1974) (URP CSTR model), a two dimensional system
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Fig. 5. Visualization of training data for URP CSTR.
of ordinary differential equations (Eq. (6)),
𝑑𝑥1
𝑑𝑡

= −𝑥1 + Da ⋅ (1 − 𝑥1) ⋅ exp (𝑥2) = 𝑓1(𝑥1, 𝑥2) (6a)

𝑑𝑥2
𝑑𝑡

= −𝑥2 + B ⋅ Da ⋅ (1 − 𝑥1) ⋅ exp (𝑥2) − 𝛽 ⋅ 𝑥2 = 𝑓2(𝑥1, 𝑥2) (6b)

where 𝑥1 is non-dimensional concentration (conversion), 𝑥2 is non-
dimensional temperature, and 𝑡 is non-dimensional time. This system
is parameterized by the (usually) fixed parameters 𝐵 = 11 and 𝛽 = 3.0,
and a variable parameter Da (the Damkohler number) sampled in the
range Da ∈ (0.2, 0.5). For this choice of 𝐵 and 𝛽, the model exhibits two
Hopf bifurcation points wrt. Da: at Da = 0.280275 and Da = 0.419548
respectively (Fig. 5). Stable periodic oscillatory behavior is observed
in the range 0.280275 ≤ Da ≤ 0.419548, and a single stable steady state
outside of this range. Sample trajectories of training data are visualized
in Fig. 5.

The neural network architecture here is a multi-layer perceptron
with the following structure: a three-neuron input layer with SiLU
activation; two hidden layers of 64 neurons each with SiLU activation;
and an output layer with two neurons (black-box formulation) or a
single neuron (gray-box formulation) with linear activation.

In the ‘‘Black-Box’’ formulation, no a priori knowledge of the system
is assumed, and so the neural network must learn the full dynamics
(Eq. (7)) and its dependence on 𝐷𝑎.

̂̇𝐱 =  (𝐱,Da; 𝜃) where 𝐱 = {𝑥1, 𝑥2} (7)

In the gray-box formulation, some parts of the system dynamics are
known a priori, while others are unknown (Eq. (8)). Here, the kinetics
of the reaction are assumed to be unknown, but the form of the overall
6

mass and energy conservation laws, as well as the coupling of the
reaction rate to reactive heat generation (the heat of reaction, which
can be measured independently) are assumed to be known.

�̂� =  (𝐱, 𝐷𝑎; 𝜃)
̂̇𝑥1 = −𝑥1 + �̂�
̂̇𝑥2 = −𝑥2 + B ⋅ �̂� − 𝛽 ⋅ 𝑥2

(8a)

Here �̂�(𝐱, 𝐷𝑎) is the neural network approximation of the reaction
kinetics (Eq. (8b)).

𝜙 = 𝑓𝜙(𝐱,Da) = Da ⋅ (1 − 𝑥1) ⋅ exp (𝑥2) (8b)

Here B and 𝛽 are experimental parameters that can be independently
measured, are assumed known a priori and are ‘‘hardwired’’ in the
network; if they happen to not be known, they can of course be
considered as additional training parameters, to be fitted along with 𝐷𝑎
and the neural network weights during ANN training.

For simplicity, unless otherwise specified,  represents the overall
network trained to predict ̂̇𝐱, with all gray-box aspects subsumed within
this representation.

̂̇𝐱 =  (𝐱,Da; 𝜃) (8c)

In our demonstration we gradually ‘‘build up’’ the complexity in
the training data used by incrementally incorporating the following
pathologies: large data sampling 𝛥𝑡; arbitrary data 𝛥𝑡; partial obser-
vations; and without initial conditions known/given. All model results
are summarized in Tables 1 and 2. Case A (Fig. 6(a)) is the base case,
with the training data trajectories densely sampled in time, with full
observations and regular time sampling. For this simple base case, we
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Table 1
Metrics summary table for URP CSTR training. This Table showcases model performance on data of increasing complexity of representation. Errors are means
and standard deviations of 10 training runs. Refer to Appendix A.2 for details on error metrics.
Case A B C D E F URP_BB

Data < 𝛥𝑡 > 0.1 0.5 0.5 0.5 0.5 (𝑥1)
0.55(𝑥2)

0.5 0.5

Solver max 𝛿𝑡 0.1 0.5 0.1 0.1 0.1 0.1 0.1

Arbitrary data 𝛥𝑡 – – – ✓ – ✓ ✓

Partial
observations

– – – – ✓ ✓ ✓

Initial condition
known

✓ ✓ ✓ ✓ ✓ ✓ –

Solution error
(2)

(9.68 ± 1.71)
×10−3

(1.49 ± 0.12)
×10−2

(8.69 ± 1.18)
×10−3

(4.23 ± 0.43)
×10−3

(6.09 ± 0.56)
×10−3

(8.91 ± 1.65)
×10−3

(7.92 ± 1.36)
×10−3

RHS error (2) (2.72 ± 0.36)
×10−3

(9.71 ± 0.76)
×10−3

(5.95 ± 1.21)
×10−3

(3.50 ± 0.34)
×10−3

(3.66 ± 0.46)
×10−3

(7.12 ± 0.81)
×10−3

(7.69 ± 0.11)
×10−3
Table 2
Metrics summary table for URP CSTR data. This table showcases model performance of black-box and gray-box models. All models have arbitrary data 𝛥𝑡,
partial observations and unknown initial conditions. Errors are means and standard deviations of 10 training runs. Refer to Appendix A.2 for details on error
metrics.
Case Learnable kinetic

functions
Learnable
experimental
parameters

Solution error
(2)

RHS error (2) Kinetic function
error (2)

Experimental
parameter error
(2)

URP_BB – – (7.92±1.36)×10−3 (7.69±0.11)×10−3 – –
URP_GB1 ✓ – (9.91±1.26)×10−3 (4.43±0.51)×10−3 (5.31±0.62)×10−3 –
URP_GB2 ✓ ✓ (1.22±0.17)×10−2 (6.49±2.08)×10−3 (7.77±2.25)×10−3 (4.45±2.28)×10−2
Fig. 6. Bifurcation diagram predictions.
observe good reproduction of the bifurcation diagram by the black
box trained network. Cases B (Fig. 6(b)) and C (Fig. 6(c)) demonstrate
the importance of controlling the solver max 𝛿𝑡. In Case B, the solver
max 𝛿𝑡 = 0.5 is too large for stable/accurate integration with the
embedded RK4 integrator, and the model is unable to reproduce the
Hopf Bifurcation point near 𝐷𝑎 = 0.42. Reducing the solver max 𝛿𝑡
to 0.1 in Case C resolves this issue. In Cases D and E, we introduce
arbitrary time sampling and partial observations respectively; Case F
has both of these data pathologies simultaneously. In all three we
observe good training results with low solution and RHS error. Finally,
in Case URP_BB (Fig. 6(d)), we let the initial condition vector be
trainable, allowing for training on data where the initial condition is
unknown/where not all variables are measured at the first sampling
time.
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In Cases URP_GB1 and URP_GB2 (Fig. 7, Table 2) we introduce
physics informed ‘‘gray-boxes’’ into our model. In both, rather than
learning the dynamic evolution of variables 𝑥1 and 𝑥2 directly, the
model instead learns the kinetic function 𝑓𝜙; the evolution of 𝑥1 and 𝑥2
is reconstructed by mass and energy balances, and coupling of reaction
kinetics and energetics. In Case URP_GB1, the coupling constants 𝐵 and
𝛽 are known, while in Case URP_GB2 they are unknown and introduced
as additional trainable parameters for the model. In both cases, the
data has the pathology of having partial observations, arbitrary time
sampling, and unknown initial conditions. In Case URP_GB2 (Fig. 7)
we observe good reproduction of the bifurcation diagram, accurate
prediction of the kinetic function 𝑓𝜙 that translates into accurate RHS
predictions for both 𝑥1 and 𝑥2, and the coupling constants 𝐵 and 𝛽 are
well predicted.
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Fig. 7. Trained model performance for case URP_GB2 (Gray-Box with trainable experimental parameters).
A major benefit of training in ‘‘gray-box’’ as opposed to ‘‘black-box’’
is that it retains physical intuition, and in doing so we expect that it
will allow for extrapolation to parameter space beyond the training
data. This is evidenced in the Case URP_GB1 (Fig. 8); this model was
trained on a fixed, known value of 𝐵 and 𝛽, and the neural network
was used to learn the kinetic reaction term. This allows the model to
be extrapolated to values of 𝐵 and 𝛽 well beyond those trained on,
allowing for predictions of bifurcation diagrams for B and 𝛽 that are
remarkably close to ground truth despite the model having been trained
at a single set of parameter values.

For our second illustrative example, we use data from a classical
biochemical model involving the coexistence of three microbial species
growing in co-culture, coupled through various chemical substrates
and cofactors (Baltzis and Frederickson, 1984) (B&F Model). This is
a six-dimensional system of coupled ODEs outlined in Eq. (9), with
parameter values in Table 3. The training data is visualized in Fig. 9.
8

𝑑𝑥
𝑑𝑡

= −𝛼𝑥 + 𝜇1𝑥 − 𝜇𝑐1𝑥 Host Species
𝑑𝑦
𝑑𝑡

= −𝛼𝑦 + 𝜇2𝑦 − 𝜇𝑐2𝑦 Commensal Species 1
𝑑𝑧
𝑑𝑡

= −𝛼𝑧 + 𝜇3𝑧 − 𝜇𝑐3𝑧 Commensal Species 2
𝑑𝑢
𝑑𝑡

= 𝛼(𝑢𝑓 − 𝑢) − 𝜇1𝑥 Host Substrate
𝑑𝑣
𝑑𝑡

= −𝛼𝑣 + 𝜔𝜇1𝑥 − 𝜇2𝑦 − 𝜎𝜇3𝑧 Growth Factor
𝑑𝑔
𝑑𝑡

= −𝛼𝑔 + 𝜌𝜇2𝑦 + 𝜂𝜇3𝑧 Inhibition Factor,

(9a)

where

𝜇1 = 𝑓𝜇1 (𝑢, 𝑔) =
𝑢

(1 + 𝑢)(1 + 𝑔)
Host Species Growth Rate

𝜇2 = 𝑓𝜇2 (𝑣) =
𝜙1𝑣
1 + 𝑣

Commensal Species 1 Growth Rate

𝜇 = 𝑓 (𝑣) =
𝜙2𝑣 Commensal Species 2 Growth Rate.

(9b)
3 𝜇3 𝜎 + 𝑣
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Fig. 8. Case URP_GB1 (Gray-Box with fixed/known experimental parameters): Extrapolating to new parameter values. The dotted red line is at the parameter value of training
data; all other parameter values are extrapolations beyond training data.
Table 3
Parameter values for Baltzis &
Frederickson (B&F) model.
Parameter Value

𝛼 1∕7.3
𝑢𝑓 250.0
𝜔 9.7
𝜎 10.0
𝜌 0.13138686
𝜂 1.29166
𝜙1 0.2941176
𝜙2 0.367647
𝜇𝑐1 0.367647
𝜇𝑐2 0.117647
𝜇𝑐3 0.1617647

The host 𝑥 grows on substrate 𝑢 and secretes growth factor 𝑣. Com-
mensal species 𝑦 and 𝑧 consume growth factor 𝑣 and release inhibition
factor 𝑔 that inhibits growth of the host 𝑥. 𝑓𝜇𝑖 are the growth rate
functions of each species, and 𝜇𝑐𝑖 is a constant parameter dictating
maintenance rate of each biomass species.

The neural network architecture is a multi-layer perceptron with a
six neuron input layer with SiLU activation; two hidden layers of 32
neurons each with SiLU activation; and an output layer with six neurons
(black-box formulation) or three neurons (gray-box formulation) with
linear activation. In the ‘‘Black-Box’’ formulation, no a priori knowledge
of the system is assumed, and so the neural network must learn the full
system (Eq. (10))

̂̇𝐱 =  (𝐱; 𝜃) where 𝐱 = {𝑥, 𝑦, 𝑧, 𝑢, 𝑣, 𝑔}. (10)

In the gray-box formulation, some parts of the system dynamics are
known a priori; others are unknown (Eq. (11)). Here, the microbial
growth rates are assumed to be unknown, but the overall mass and
energy conservation laws, as well as the coupling of growth rates to
substrate and growth/inhibition factor production and utilization are
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known:
{�̂�1,𝑥, �̂�2,𝑦, �̂�3,𝑧} =  (𝐱; 𝜃)

̂̇𝑥 = −𝛼𝑥 + �̂�1,𝑥 − 𝜇𝑐1𝑥
̂̇𝑦 = −𝛼𝑦 + �̂�2,𝑦 − 𝜇𝑐2𝑦
̂̇𝑧 = −𝛼𝑧 + �̂�3,𝑧 − 𝜇𝑐3𝑧
̂̇𝑢 = 𝛼(𝑢𝑓 − 𝑢) − �̂�1,𝑥
̂̇𝑣 = −𝛼𝑣 + 𝜔�̂�1,𝑥 − �̂�2,𝑦 − 𝜎�̂�3,𝑧
̂̇𝑔 = −𝛼𝑔 + 𝜌�̂�2,𝑦 + 𝜂�̂�3,𝑧

(11a)

where {�̂�1,𝑥, �̂�2,𝑦, �̂�3,𝑧} are neural network approximations of the micro-
bial growth rates (Eq. (9b)) multiplied by the biomass concentration
of the respective microbe; and {𝜔, 𝜎, 𝜌, 𝜂} are experimental parameters
that are either known a priori, or else included as additional parameters
to be fit during ANN training. For simplicity of expression, unless
otherwise specified, let  represent the overall network to predict ̂̇𝐱,
with all gray-box aspects subsumed within this representation.

̂̇𝐱 =  (𝐱; 𝜃) (11b)

We now demonstrate the training methodology, developed and
illustrated through the URP CSTR model, on the B&F model; the
metrics are summarized in Table 4. All cases have the data pathology
of arbitrary time sampling, partial observations and unknown initial
conditions. Case BF_BB (Fig. 10) is the black-box case, and we observe
good prediction of the RHS of all 6 variables as well as accurate
reproduction of the steady limit cycle. In cases BF_GB1 and BF_GB2
(Fig. 11) we introduce physics-informed gray-boxes, with the model
learning the microbial growth functions for the species 𝑥, 𝑦, 𝑧, with
the overall evolution of all 6 variables specified using mass balances
with coupling parameters 𝜔, 𝜎, 𝜌, 𝜂. In Case BF_GB1 these coupling
parameters are known, while in Case BF_GB2 they are unknown and
are introduced as additional parameters to be learned during model
training. For Case BF_GB2 (Fig. 11), the model predicts accurately the
microbial growth rates and the coupling parameters; this translates to
accurate prediction of the RHS of all 6 variables and good reproduction
of the limit cycle.



Computers and Chemical Engineering 178 (2023) 108343S. Malani et al.
Fig. 9. Transients and limit cycles of B&F training data. The stable Limit Cycle is given in black; the 200 training trajectories represented in light gray with 4 emphasized in
colors to show transient behavior.
Table 4
Metrics summary table for B&F data. This table showcases model performance of black-box and gray-box models. All models have arbitrary data 𝛥𝑡,
partial observations and unknown initial conditions. Refer Appendix A.2 for details on metrics.
Case Learnable kinetic

functions
Learnable exp.
parameters

Solution error
from true LC
(2)

RHS error (2) Kinetic function
error (2)

Exp. parameter
error (2)

BF_BB ✗ ✗ (3.25±0.43)×10−3 (2.12±0.45)×10−3 – –
BF_GB1 ✓ ✗ (5.16±0.68)×10−3 (5.43±0.80)×10−3 (7.66±1.14)×10−4 –
BF_GB2 ✓ ✓ (6.10±2.72)×10−3 (7.50 ± 3.2) × 10−3 (1.09±0.49)×10−3 (7.51 ± 2.1) × 10−2
Fig. 10. Trained model performance for case BF_BB.
10
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Fig. 11. Trained model performance for Case BF_GB2.
Fig. 12. The performance of the best model on a single representative training trajectory, for cases BF_BB_A through BF_BB_D. This is shown for both (i) the recursive neural
network iteration with the time-steps used during training; and (ii) the scipy.integrate.solve_ivp solver, which uses variable time stepping (and thus helps better test the accuracy
of integrating the learned RHS).
4. Discussion and conclusions

In the course of this work, we observed certain pathologies with
the model training that we believe are interesting enough to report and
discuss.

The ‘‘Resonance’’ Effect. We observed that, when working with
fixed rate time sampling data, depending on the initialization of model
11
weights, training might indeed successfully fit the data by converging
to a visibly wrong local minimum. Rather than learning the RHS of the
underlying ODE system, it learned a ‘‘resonance-type’’ time-one map:
instead of a smooth curve interpolating the data points, two integration
steps, with very different slopes (Fig. 12(a)(i), 12(a)(ii)), now take
us from each data point to the next; one can describe this as a 2:1
resonance between the integration step and the data sampling step.



Computers and Chemical Engineering 178 (2023) 108343S. Malani et al.
Table 5
Metrics summary table for B&F data. This table showcases the resonance effect. Refer Appendix A.2 for details on metrics.

Case Initial scaling Randomized
data 𝛥𝑡

Randomized
solver 𝛿𝑡

Solution error
from true LC
(2)

RHS error (2)

BF_BB_A ×1000 ✗ ✗ (4.33±2.58)×10−1 8.47 ± 1.63

BF_BB_B ×100−1 ✗ ✗ (4.13±0.53)×10−3 (2.89±0.92)×10−3

BF_BB_C ×1000 ✗ ✓ (8.40±3.52)×10−2 1.65 ± 0.68

BF_BB_D ×1000 ✓ ✓(Because of
data)

(1.14±0.17)×10−2 (2.88±0.68)×10−2

BF_BB_E ×100−1 ✓ ✓(Because of
data)

(4.18±0.71)×10−3 (3.10±0.56)×10−3
Fig. 13. Initial condition prediction for case BF_GB2. Despite the initial conditions learned not being correct, the trained ANN when integrated from the learned initial condition (solid
blue line) quickly converges with the trajectory integrated from the true initial condition (dashed blue line), and in long-term dynamics the two are practically indistinguishable.
This is due to the separation of time scales (fast-slow nature) of the initial startup.
In the above example, the data was sampled every 𝛥𝑡 = 8.333.
For case Bf_BB_A (Fig. 12(a)), this 𝛥𝑡 was broken up in the RK4
numerical integrator into two steps of 5 and 3.33 consistently. With
‘‘bad’’ (random) weight initialization, the model training ‘‘hard-wires’’
this time step, essentially learning a time-one map without explicitly
learning the RHS of the ODE; when iterated through the network with
the same time-steps as during training, we observe a characteristic
zig-zag ‘‘resonance’’ style output (Fig. 12(a)(i)). We explored various
mitigation techniques to prevent convergence to such a local minimum
(Table 5). One approach involved attempts at better initialization of the
model weights (here, simply scaling the output layer’s weights down
by a factor of 100, with the initialization of other layers unchanged)
(Case BF_BB_B, Fig. 12(b)). Secondly, we randomize the solver 𝛿𝑡 steps
so that, rather than consistently taking steps of (5+3.333), the 𝛥𝑡 = 8.333
was broken up into randomly sized time chunks, all selected below the
max 𝛿𝑡 of 5 (Case BF_BB_C, Fig. 12(c)). Thirdly, we randomize the data
sampling itself, with a gamma distribution with mean < 𝛥𝑡 = 8.333 >,
and in doing so the solver 𝛿𝑡 values were naturally randomized too
(Case BF_BB_D, Fig. 12(d)). All three methods allowed the model to
escape the bad local minimum, or to even remove it entirely (see
Table 5).

The learning of initial conditions. We have observed that when
initial conditions were not part of the training set, and needed to
be inferred our models did not consistently infer the correct initial
conditions (Fig. 13). This can be rationalized (and mitigated) by consid-
ering what happens in multi-time-scale singularly perturbed dynamic
problems (fast-slow systems, systems with large separation of time
12
scales) (Fig. 14, Eq. (12)).

�̇� = 𝑓 (𝑥, 𝑦)

𝜖�̇� = 𝑔(𝑥, 𝑦)
(12)

In such problems (our 6 ODEs exhibit eigenvalues of the linearization
that vary by one or more orders of magnitude (Table 6)), initial
conditions very quickly (over the fast time scale) converge to a ‘‘slow
manifold’’, on which the long-term dynamics evolve over the slow time
scale. This is the same argument as the celebrated Quasi-Steady-State
(QSSA) or Bodenstein Approximation in chemical kinetics. This means
that an infinity of initial conditions will quickly (over the fast time
scale) end up at (practically) the same state value on the slow manifold
after this short initial integration period, and then remain and evolve
on the slow manifold (Gear et al., 2005; Vandekerckhove et al., 2009;
Antonios et al., 2012; Zagaris et al., 2009).

In the relevant literature (Balmaseda et al., 2009), this is mitigated
by searching for an initial condition that already lies approximately
on the slow manifold. Say we are interested in an initial condition 𝛥𝑡
before our first sampled data point. The trick for constructing such
a ‘‘mature’’ or ‘‘bred’’ initial condition one 𝛥𝑡 in the past involves
estimating an initial condition farther back (say 10 𝛥𝑡 earlier, which
can be anywhere on the fast foliation of the slow manifold), and then
letting it evolve for 9𝛥𝑡. This allows the ‘‘bad’’ components of the earlier
initial condition to ‘‘mature’’ (‘‘breed’’) giving us a good estimate for an
initial condition on the slow manifold at the desired one 𝛥𝑡 in the past.

Summary and Outlook. In this paper, we presented a neural-
network based identification architecture—inspired by, and based on
traditional numerical analysis—to address a number of time series
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Table 6
Eigenvalues for the jacobian of the ground truth ODEs and the trained model on the true and
learned initial conditions. The fast dynamics associated with the leading eigenvalues (in red) decay
quickly at a time scale of 𝑡 = 2 to 𝑡 = 2.3 and quickly converge to the slower manifolds associated
with the eigenvalues in blue that are consistent with the true system. The training data used was
sampled at an average 𝛥𝑡 = 8, hence the faster dynamics could not be learned (or discouraged)
during model training.
Eigenvalue True ODE True IC Trained ANN True IC Trained ANN Learned IC

1 −0.20506 − 0.020221𝑗 −0.51397 −0.51752
2 −0.20506 + 0.020221𝑗 −0.44970 −0.44258
3 −0.20145 −0.20145 −0.20145
4 −0.025494 −0.026535 −0.026341
5 0.002033 − 0.03847𝑗 −0.000690 − 0.03661𝑗 −0.004094 − 0.03534𝑗
6 0.002033 + 0.03847𝑗 −0.000690 + 0.03661𝑗 −0.004094 + 0.03534𝑗
Fig. 14. Separation of fast and slow time-scales, as observed in singular perturbation
problems (Eq. (12)), can lead to multiple initial conditions that are practically consistent
with the same first measured datapoint, as they evolve rapidly on the fast manifold
before converging on to the slow manifold. Ideally, we would want the initial condition
that has been ‘bred’ till it lies on the slow manifold as this is the ‘‘most likely’’
candidate, but this can be hard to impose.

data pathologies: uneven sampling rates, missing data (including initial
conditions), as well as unknown or partially known physics.

We formulated the systems identification process as the learning
of the right-hand-side of a system of ordinary differential equations,
which can be combined with numerical integration methods. In each
forward pass, we iterate through each training trajectory through time,
using teacher-forcing when real data is available, and autoregressive
iterations when not, allowing for training on partial observations. We
demonstrated how this architecture can be integrated with white-box
prior knowledge, where the neural networks learn physically inter-
pretable functions such as microbial growth rates or chemical reac-
tion rates, as well as experimental parameters; global laws, such as
coupling between reaction rates and heats of reaction, or microbial
growth rates, substrate consumption and product formation were easy
to systematically ‘‘hardwire’’ in the architecture.

We expect that the approach (especially its ‘‘gray box’’ compo-
nent) will make it useful in industrial applications (e.g. in CHO cell
culture biomanufacturing, which we are currently exploring). On the
technical/computational side, a natural next task involves the effi-
cient and easily usable implementation of parallel batching, and, more
generally the consistent use of parallelization to accelerate compu-
tation. We also expect work towards incorporating adaptivity of the
approach, in the spirit of adaptive time step selection for traditional
initial value solvers. Linking this work with uncertainty quantification
is an important direction, and a subject of current applied ML research,
13
whether of parameter uncertainty or of prediction uncertainty. Remark-
ably, the error between the identified right-hand-sides of the dynamics
(termed Inverse Modified Differential Equations or IMDEs) and the true
dynamics—the so called Inverse Modified Error Analysis—appears to be
a nascent branch of numerical analysis, born by precisely the type of
work we present here (Zhu et al., 2022, 2023).
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Appendix A. Supplementary

A.1. Supplementary results

A.1.1. URP model
See Tables A.1 and A.2.

A.1.2. B&f model
See Tables A.3 and A.4.
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𝐱

Table A.1
Metrics Summary Table for URP CSTR data. This table showcases model performance on data of increasing complexity of representation. Refer Section A.2 for details on metrics.

Case Data ⟨𝛥𝑡⟩ Solver max 𝛿𝑡 Arbitrary data 𝛥𝑡 Partial observations Initial condition known Solution error RHS error

A 0.1 0.1 ✗ ✗ ✓ 1 ∶ (1.31 ± 0.24) × 10−2

2 ∶ (9.68 ± 1.71) × 10−3

∞ ∶ (1.58 ± 0.27) × 10−2

1 ∶ (3.66 ± 0.52) × 10−3

2 ∶ (2.72 ± 0.36) × 10−3

∞ ∶ (4.56 ± 0.57) × 10−3

B 0.5 0.5 ✗ ✗ ✓ 1 ∶ (1.97 ± 0.17) × 10−2

2 ∶ (1.49 ± 0.12) × 10−2

∞ ∶ (2.58 ± 0.22) × 10−2

1 ∶ (1.32 ± 0.10) × 10−2

2 ∶ (9.71 ± 0.76) × 10−3

∞ ∶ (1.61 ± 0.13) × 10−2

C 0.5 0.1 ✗ ✗ ✓ 1 ∶ (1.14 ± 0.15) × 10−2

2 ∶ (8.69 ± 1.18) × 10−3

∞ ∶ (1.50 ± 0.24) × 10−2

1 ∶ (7.90 ± 1.64) × 10−3

2 ∶ (5.95 ± 1.21) × 10−3

∞ ∶ (1.03 ± 0.21) × 10−2

D 0.5 0.1 ✓ ✗ ✓ 1 ∶ (5.56 ± 0.60) × 10−3

2 ∶ (4.23 ± 0.43) × 10−3

∞ ∶ (7.44 ± 0.80) × 10−3

1 ∶ (4.67 ± 0.44) × 10−3

2 ∶ (3.50 ± 0.34) × 10−3

∞ ∶ (5.97 ± 0.62) × 10−3

E 0.5 (𝑥1)
0.55 (𝑥2)

0.1 ✗ ✓ ✓ 1 ∶ (8.08 ± 0.79) × 10−3

2 ∶ (6.09 ± 0.56) × 10−3

∞ ∶ (1.04 ± 0.09) × 10−2

1 ∶ (4.91 ± 0.63) × 10−3

2 ∶ (3.66 ± 0.46) × 10−3

∞ ∶ (6.27 ± 0.75) × 10−3

F 0.5 0.1 ✓ ✓ ✓ 1 ∶ (1.16 ± 0.22) × 10−2

2 ∶ (8.91 ± 1.65) × 10−3

∞ ∶ (1.59 ± 0.30) × 10−2

1 ∶ (9.22 ± 1.05) × 10−3

2 ∶ (7.12 ± 0.81) × 10−3

∞ ∶ (1.27 ± 0.15) × 10−2

URP_BB 0.5 0.1 ✓ ✓ ✗ 1 ∶ (9.91 ± 1.71) × 10−3

2 ∶ (7.92 ± 1.36) × 10−3

∞ ∶ (1.45 ± 0.26) × 10−2

1 ∶ (9.99 ± 1.41) × 10−3

2 ∶ (7.69 ± 0.11) × 10−3

∞ ∶ (1.37 ± 0.18) × 10−2
Table A.2
Metrics Summary Table for URP CSTR data. This table showcases model performance of Black-box and Gray-box models. All models have arbitrary data 𝛥𝑡,
partial observations and unknown initial conditions. Refer Section A.2 for details on metrics.

Case Learnable
kinetic
functions

Learnable
experimental
parameters

Solution
error

RHS
error

Kinetic
function
error

Experimental
parameter
error

URP_BB ✗ ✗ 1 ∶ (9.91 ± 1.71) × 10−3

2 ∶ (7.92 ± 1.36) × 10−3

∞ ∶ (1.45 ± 0.26) × 10−2

1 ∶ (9.99 ± 1.41) × 10−3

2 ∶ (7.69 ± 0.11) × 10−3

∞ ∶ (1.37 ± 0.18) × 10−2

- -

URP_GB1 ✓ ✗ 1 ∶ (1.37 ± 0.18) × 10−2

2 ∶ (9.91 ± 1.26) × 10−3

∞ ∶ (1.53 ± 0.18) × 10−2

1 ∶ (6.24 ± 0.72) × 10−3

2 ∶ (4.43 ± 0.51) × 10−3

∞ ∶ (6.87 ± 0.80) × 10−3

(5.31±0.62)×10−3 -

URP_GB2 ✓ ✓ 1 ∶ (1.68 ± 0.24) × 10−2

2 ∶ (1.22 ± 0.17) × 10−2

∞ ∶ (1.90 ± 0.26) × 10−2

1 ∶ (8.97 ± 2.87) × 10−3

2 ∶ (6.49 ± 2.08) × 10−3

∞ ∶ (1.04 ± 0.34) × 10−2

(7.77±2.25)×10−3 (4.45±2.28)×10−2
Table A.3
Metrics Summary Table for B&F data. This table showcases model performance of Black-box and Gray-box models. All models have arbitrary data 𝛥𝑡, partial observations
and unknown initial conditions. Errors are means and standard deviations of 10 training runs. Refer to Section A.2 for details on error metrics.

Case Learnable
kinetic
functions

Learnable
exp.
parameters

Solution
error
from
true LC

RHS
Error

Kinetic
function
error

Exp.
parameter
error

BF_BB ✗ ✗ 1 ∶ (6.26 ± 0.81) × 10−3

2 ∶ (3.25 ± 0.43) × 10−3

∞ ∶ (1.36 ± 0.17) × 10−2

1 ∶ (4.00 ± 0.77) × 10−3

2 ∶ (2.12 ± 0.45) × 10−3

∞ ∶ (7.13 ± 1.28) × 10−3

- -

BF_GB1 ✓ ✗ 1 ∶ (1.04 ± 0.15) × 10−2

2 ∶ (5.16 ± 0.68) × 10−3

∞ ∶ (1.90 ± 0.24) × 10−2

1 ∶ (9.94 ± 1.41) × 10−3

2 ∶ (5.43 ± 0.80) × 10−3

∞ ∶ (1.68 ± 0.23) × 10−2

1 ∶ (1.02 ± 0.14) × 10−3

2 ∶ (7.66 ± 1.14) × 10−4

∞ ∶ (1.24 ± 0.17) × 10−3

-

BF_GB2 ✓ ✓ 1 ∶ (1.22 ± 0.57) × 10−2

2 ∶ (6.10 ± 2.72) × 10−3

∞ ∶ (2.33 ± 1.09) × 10−2

1 ∶ (1.37 ± 0.60) × 10−2

2 ∶ (7.50 ± 3.2) × 10−3

∞ ∶ (2.47 ± 1.48) × 10−2

1 ∶ (1.48 ± 0.71) × 10−3

2 ∶ (1.09 ± 0.49) × 10−3

∞ ∶ (1.79 ± 1.17) × 10−3

(7.51 ± 2.1) × 10−2
A.2. Metrics used

�̇� = 𝑓 (𝐱,𝐩) 𝑇 𝑟𝑢𝑒 𝑂𝐷𝐸

̂̇ =

{

 (𝐱,𝐩; 𝜃) 𝐿𝑒𝑎𝑟𝑛𝑒𝑑 𝑂𝐷𝐸 (𝐵𝑙𝑎𝑐𝑘 𝐵𝑜𝑥)
𝑔(𝐱,𝐩, (𝐱,𝐩; 𝜃)) 𝐿𝑒𝑎𝑟𝑛𝑒𝑑 𝑂𝐷𝐸 (𝐺𝑟𝑎𝑦 𝐵𝑜𝑥)

(A.1)

A.2.1. Short-term prediction error
Let 𝐱𝐿𝐶𝑗 = {𝑥𝐿𝐶𝑖 }𝑗 be the steady-state solution if it is stable, and a

point on the limit cycle (obtained by solving a Poincaré map) if the
14

steady-state solution is unstable. Let 𝑁𝑣 be the number of variables,
𝑁𝑛 the number of testing points, and 𝑇 the time period for short-term
transients.

Starting from 𝐱𝐿𝐶𝑗 , the true ODEs and the ANN learned ODEs are
integrated for 𝑡 = 𝑇 (Fig. A.1 (b)).

𝐱𝑗 (𝑡 = 0) = 𝐱𝐿𝐶𝑗 , 1 ≤ 𝑗 ≤ 𝑁𝑛

𝐲𝑗 = ∫

𝑇

0
𝑓 (𝐱,𝐩)𝑑𝑡, 1 ≤ 𝑗 ≤ 𝑁𝑛

�̂�𝑗 =
{

∫ 𝑇
0  (𝐱,𝐩; 𝜃)𝑑𝑡, 1 ≤ 𝑗 ≤ 𝑁𝑛 (𝐵𝑙𝑎𝑐𝑘 𝐵𝑜𝑥)
∫ 𝑇
0 𝑔(𝐱,𝐩, (𝐱,𝐩; 𝜃))𝑑𝑡, 1 ≤ 𝑗 ≤ 𝑁𝑛 (𝐺𝑟𝑎𝑦 𝐵𝑜𝑥)

(A.2)

𝐲𝑗 and �̂�𝑗 are the true and predicted matrices. These matrices
are condensed into an error metric using various norms defined in
Appendix A.2.5.
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Table A.4
Metrics Summary Table for B&F data. This table showcases the resonance effect. Refer Section A.2 for details on metrics.

Case Initial
scaling

Randomized
data 𝛥𝑡

Randomized
solver 𝛿𝑡

Solution error
from true LC

RHS error

BF_BB_A ×1000 ✗ ✗ 1 ∶ (8.02 ± 4.02) × 10−1

2 ∶ (4.33 ± 2.58) × 10−1

∞ ∶ 2.03 ± 1.43

1 ∶ 14.6 ± 2.56
2 ∶ 8.47 ± 1.63
∞ ∶ 38.3 ± 9.43

BF_BB_B ×100−1 ✗ ✗ 1 ∶ (7.84 ± 0.92) × 10−3

2 ∶ (4.13 ± 0.53) × 10−3

∞ ∶ (1.72 ± 0.24) × 10−2

1 ∶ (5.29 ± 1.50) × 10−3

2 ∶ (2.89 ± 0.92) × 10−3

∞ ∶ (9.23 ± 2.49) × 10−3

BF_BB_C ×1000 ✗ ✓ 1 ∶ (1.63 ± 0.70) × 10−1

2 ∶ (8.40 ± 3.52) × 10−2

∞ ∶ (3.50 ± 1.43) × 10−1

1 ∶ 2.77 ± 1.22
2 ∶ 1.65 ± 0.68
∞ ∶ 7.59 ± 3.38

BF_BB_D ×1000 ✓ ✓

(Because
of data)

1 ∶ (2.29 ± 0.39) × 10−2

2 ∶ (1.14 ± 0.17) × 10−2

∞ ∶ (4.46 ± 0.66) × 10−2

1 ∶ (4.57 ± 1.00) × 10−2

2 ∶ (2.88 ± 0.68) × 10−2

∞ ∶ (1.21 ± 0.31) × 10−1

BF_BB_E ×100−1 ✓ ✓

(Because
of data)

1 ∶ (7.99 ± 1.33) × 10−3

2 ∶ (4.18 ± 0.71) × 10−3

∞ ∶ (1.74 ± 0.30) × 10−2

1 ∶ (5.69 ± 1.01) × 10−3

2 ∶ (3.10 ± 0.56) × 10−3

∞ ∶ (1.02 ± 0.18) × 10−2
Fig. A.1. (a) Sampling points were obtained by randomizing initial conditions, integrating in time and discarding the early transients, and sub-sampling from 1000 different
trajectories. (b) Short term transients obtained by taking as initial conditions 50 points evenly spaced around the true limit cycle and integrating for 𝑡 = 20.
A.2.2. RHS error
Visualization of sampling points is given in Fig. A.1 (a).

𝐲𝑗 = 𝑓 (𝐱,𝐩), 1 ≤ 𝑗 ≤ 𝑁𝑛

�̂�𝑗 =
{

 (𝐱,𝐩; 𝜃), 1 ≤ 𝑗 ≤ 𝑁𝑛 (𝐵𝑙𝑎𝑐𝑘 𝐵𝑜𝑥)
𝑔(𝐱,𝐩, (𝐱,𝐩; 𝜃)), 1 ≤ 𝑗 ≤ 𝑁𝑛 (𝐺𝑟𝑎𝑦 𝐵𝑜𝑥)

(A.3)

𝐲𝑗 and 𝐲𝑗 are the true and predicted matrices. These matrices
are condensed into an error metric using various norms defined in
Appendix A.2.5.

A.2.3. Gray-box function error
For Gray-Box models, the neural network learns a subset of the full

ODE function. Visualization of sampling points is given in Fig. A.1 (a).

�̇� = 𝑓 (𝐱,𝐩) = 𝑔(𝐱,𝐩, 𝜙(𝐱,𝐩)) 𝑇 𝑟𝑢𝑒 𝑂𝐷𝐸
(A.4)
15

̂̇𝐱 = 𝑔(𝐱,𝐩, �̂�(𝐱,𝐩)) 𝐿𝑒𝑎𝑟𝑛𝑒𝑑 𝑂𝐷𝐸
𝐲𝑗 = 𝜙(𝐱,𝐩), 1 ≤ 𝑗 ≤ 𝑁𝑛

�̂�𝑗 = �̂�(𝐱,𝐩) =  (𝐱,𝐩; 𝜃), 1 ≤ 𝑗 ≤ 𝑁𝑛
(A.5)

𝐲𝑗 and 𝐲𝑗 are the true and predicted matrices. These matrices
are condensed into an error metric using various norms defined in
Appendix A.2.5.

A.2.4. Experimental parameter error
Some Gray-Box models include additional parameters that have

physical and experimental significance, and these are fit during ANN
training. For these parameters, relative error is used.

Let 𝜿 = {𝜅}𝑘 be the experimental parameters, with �̂� = {�̂�}𝑘
the ANN predictions, and 𝑁𝑃 the number of learnable experimental
parameters.

(𝜿, �̂�) = 1
𝑁𝑃
∑

|

|

|

𝜅𝑘 − �̂�𝑘 |
|

|

(A.6)

𝑁𝑃 𝑘=1 | 𝜅𝑘 |
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A.2.5. Norms
The error matrices 𝐲𝑗 and �̂�𝑗 are first normalized with min–max

caling per variable. �̂�𝑗 is scaled with the min/max of 𝐲𝑗 .

�̃�𝑗 =
𝐲𝑗 − min (𝐲)

max (𝐲) − min (𝐲)

̃̂𝐲𝑗 =
𝐲𝑗 − min (�̂�)

max (𝐲) − min (𝐲)

(A.7)

These normalized error matrices are condensed into a single metric
sing various norms:

1(�̃�𝑗 , ̃̂𝐲𝑗 ) =
1

𝑁𝑛𝑁𝑉

𝑁𝑛
∑

𝑗=1

𝑁𝑉
∑

𝑖=1
|�̃�𝑖,𝑗 − ̃̂𝑦𝑖,𝑗 |

2(�̃�𝑗 , ̃̂𝐲𝑗 ) =
1

𝑁𝑛𝑁𝑉

𝑁𝑛
∑

𝑗=1

√

√

√

√

𝑁𝑉
∑

𝑖=
(�̃�𝑖,𝑗 − ̃̂𝑦𝑖,𝑗 )2

∞(�̃�𝑗 , ̃̂𝐲𝑗 ) =
1
𝑁𝑛

𝑁𝑛
∑

𝑗=1
max
𝑖

|�̃�𝑖,𝑗 − ̃̂𝑦𝑖,𝑗 |

(A.8)
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