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A B S T R A C T

Fed-batch culture is an established operation mode for the production of biologics using mammalian cell
cultures. Quantitative modeling integrates both kinetics for some key reaction steps and optimization-
driven metabolic flux allocation, using flux balance analysis; this is known to lead to certain mathematical
inconsistencies Here, we propose a physically-informed data-driven hybrid model (a ‘‘gray box’’) to learn
models of the dynamical evolution of Chinese Hamster Ovary (CHO) cell bioreactors from process data The
approach incorporates physical laws (e.g. mass balances) as well as kinetic expressions for metabolic fluxes
Machine learning (ML) is then used to (a) directly learn evolution equations (black-box modeling); (b) recover
unknown physical parameters (‘‘white-box’’ parameter fitting) or—importantly—(c) learn partially unknown
kinetic expressions (gray-box modeling) We encode the convex optimization step of the overdetermined
metabolic biophysical system as a differentiable, feed-forward layer into our architectures, connecting partial
physical knowledge with data-driven machine learning
1. Introduction

Chinese hamster ovary (CHO) cells are broadly used in biological
and medical research, acting as the most common mammalian cell
line used for the production of therapeutic proteins (Butler, 2005).
The advantage of using CHO cells is that the correct (i.e., mammalian-
specific) glycosylation patterns are achieved for the protein therapeu-
tics (e.g., therapeutic antibodies). Compared with conventional batch
culture, fed-batch fermentation is more commonly used in this type
of cell line, since it allows for easier control of the concentrations of
certain nutrients that can affect the yield or productivity of the desired
protein therapeutic molecule by ensuring the availability of precursor
amino acids (Ma et al., 2009). However, lack of a complete, clear,
quantitative model of the metabolism becomes an obstacle to achieving
accurate and precise system simulation and control.

In the past several decades, mathematical models that incorpo-
rate physical knowledge have been extensively applied in the analysis
of cell metabolism (Maranas and Zomorrodi, 2016; Stephanopoulos
et al., 1998). Metabolic Flux Analysis (MFA) leveraging stable carbon
(i.e., 13C) labeled substrates techniques is the only technique that
can provide information on internal fluxes (Boghigian et al., 2010;
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Goudar et al., 2010; Quek et al., 2010). Flux Balance Analysis (FBA),
on the other hand provides a global inventory of carbon and energy
resources throughout metabolism. By applying optimization principles,
maximum theoretical yields for biomass formation or other products
(e.g., metabolites or proteins) can be derived (Chassagnole et al.,
2002; Mahadevan et al., 2002). Sometimes, for certain metabolic steps,
detailed kinetic expressions are available that given the metabolite con-
centrations and enzyme levels can accurately estimate the flux through
the metabolic reaction (Nolan and Lee, 2011). This requires the identi-
fication of the values of a number of enzymatic parameters. However,
these expressions are usually available only for a subset of reactions,
necessitating a hybrid modeling approach, where optimization is used
to identify metabolic fluxes for the remainder of reactions that lack
kinetic expressions. This gives rise to a system of ordinary differential
equations (ODEs) determined by the stoichiometry of the reactions.
In addition, given the fact that the metabolic reactions usually have
relatively fast time constants (e.g. in the order of milliseconds to
seconds) compared with other cellular processes like growth and death
of cells, the pseudo-steady-state assumption (PSSA) suggests that the
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accumulation rate of any and every intracellular metabolite can be use-
fully approximated as zero. For some reactions, (ir)reversibility can be
posited based on thermodynamics considerations; for others, reaction
rates can be estimated from chemical kinetics considerations (Suthers
et al., 2021).

Data-driven approaches are today increasingly employed for iden-
tification of complex system dynamics, including traditional regression
methods as well as neural networks and their variants (Adomaitis
et al., 1990; Hudson et al., 1990; Rico-Martines et al., 1993; Kutz,
2013; Brunton and Kutz, 2022) It is known, since the early 1990s, that
neural networks embedded within numerical integrators can fruitfully
approximate differential equations, and even learn corrections to ap-
proximate physical models, supplementing/enhancing them (Hudson
et al., 1990; Adomaitis et al., 1990; Krischer et al., 1992; Rico-Martinez
et al., 1994; Rico-Martines et al., 1993). They can also be used to
directly infer the evolution of the system variables when underlying
physics are unclear (Martin-Linares et al., 2023; Psarellis et al., 2022;
Kemeth et al., 2022a,b; Lee et al., 2022). Physics-Informed Neural Net-
works (PINNs) (Raissi et al., 2019), Systems-Biology-Informed Neural
Networks (SBINNs) (Yazdani et al., 2020; Daneker et al., 2022), and
similar architectures (Lu et al., 2021), can and have been used to
solve supervised learning tasks while respecting known laws of physics,
system biology, et al. (Karniadakis et al., 2021). Nevertheless, as we
will discuss below, the ambiguous structure of metabolic models creates
nontrivial technical difficulties in exploiting partially known physical
information from experimental fed-batch culture metabolic data; and
can drastically affect the training process for gray box neural networks
trying to infer such models from experiments. Our goal in this paper is
to elucidate the nature of these modeling ambiguities, demonstrating
the ways in which they necessitate modifications of the architectures
-and of the training- of traditional neural networks used for the identifi-
cation task; and to implement networks capable of usefully identifying
metabolic kinetics/parameters exploiting a synergy between physical
modeling and scientific computation in neural network training.

2. Methods

2.1. Structure of the biophysical model

In a nutshell, the hybrid Chinese hamster ovary (CHO) bioreaction
model we will use below (incorporating certain modifications (see
Appendices D and E,) to the model presented in Nolan and Lee (2011),
which constitutes our starting point) describes a continuous-time dy-
namical system (the terms are defined in Table 1):
d𝑪
d𝑡

= 𝒇 𝐞𝐪𝐧∶𝐨𝐝𝐞(𝑪 ; 𝒗(𝑪 ;𝜶)); (1)

These evolution equations appear at first sight as simple ordinary
ifferential equations (see Appendix B for expressions of Eq. (1)); yet,
ince evaluating the right-hand-side involves—as we will see—solving
n optimization problem, we need another temporary label for the
ature of the equations. Connecting with existing literature (Barton and
ee, 2002; Gomez et al., 2014; Mahadevan et al., 2002) we will here
efer to these as Dynamic Flux Balance Analysis (DFBA) equations.

Here, 𝑪 ∈ R𝐾 (𝐾 = 14) are variables tracked by experiments
which, though they might include concentrations of metabolites, cell
ensities, or other variables, we will simply refer to as ‘‘concentrations’’
or simplicity, see Table 4); 𝒗 ∈ R𝑁 (𝑁 = 𝐸 + 𝐼 = 35) are all fluxes
reaction rates, see Appendix C for all reaction expressions) including

intracellular fluxes (which can be precomputed from the 𝑪) 𝒗𝐼 ∈
𝐼 (𝐼 = 14) and 𝐸 extracellular fluxes 𝒗𝐸 ∈ R𝐸 (𝐸 = 21). Some of
xtracellular fluxes are assumed to be irreversible (𝒗𝐸,𝑖𝑟 ∈ R𝐸𝑖𝑟 (𝐸𝑖𝑟 =
14), 𝒗𝐸,𝑖𝑟 ≥ 0), while others are assumed reversible (𝒗𝐸,𝑟 ∈ R𝐸𝑟 (𝐸𝑟 = 7));
𝑣 is a function of 𝑪 and 𝜶, where 𝜶 ∈ R𝑃 (𝑃 = 45) are the kinetic
parameters.

Given 𝑪 and 𝜶, the evaluation of 𝒇 𝐞𝐪𝐧∶𝐨𝐝𝐞 in Eq. (1) is typically done
in one of two very different ways. Both involve the following steps,
2

Table 1
Notation and dimensions for all variables used (the fact that here, 𝐾 = 14, 𝐼 = 14 and

𝑖𝑟 = 14 is a coincidence).
Notation Variable Dimension

𝑪 Variables tracked by experiments 𝐾 = 14
𝜶 Kinetic parameters 𝑃 = 45
𝒗𝐼 Intracellular fluxes 𝐼 = 14
𝒗𝐸,𝑟 Reversible (extracellular) fluxes 𝐸𝑟 = 7
𝒗𝐸,𝑖𝑟 Irreversible (extracellular) fluxes 𝐸𝑖𝑟 = 14
𝒗𝐸 Extracellular fluxes 𝐸 = 𝐸𝑖𝑟 + 𝐸𝑟 = 21
𝒗 All fluxes 𝑁 = 𝐸 + 𝐼 = 35
𝐒 Stoichiometric matrix 𝑀 ×𝑁 = 24 × 35

but differ in the particular combination of objective/constraints and the
optimization approach used to enforce them.

Given 𝜶, and an initial set of values 𝑪0 for the concentrations, the
time derivatives of the concentrations (e.g. RHS of Equation Eq. (1))
can be computed via the following steps.

1. Compute preliminary updates of intracellular flux rates �̂�𝐼 ∈
R𝐼 (𝐼 = 14) according to the concentrations 𝑪 and given
formulas of kinetic equations

�̂�𝐼 = 𝒇𝐤𝐢𝐧(𝑪 ;𝜶), (2)

where 𝒇𝐤𝐢𝐧 ∶ R𝐾×𝑃 ↦ R𝐼 (see Appendix D for formulas of all
kinetic expressions and Appendix E for the changes of kinetic
expressions we made based on the model in Nolan and Lee
(2011)).

2. The fluxes have to satisfy some constraints:

• Known kinetic expressions, i.e. Equation Eq. (2).
• The pseudo steady state assumption, which requires

𝐒 ⋅ 𝒗 = 0, (3)

involving the stoichiometric matrix 𝐒 ∈ R𝑀×𝑁 (𝑀 = 24 is
the number of metabolites at steady state, see Appendix F
for all entries of 𝐒). If we split the columns of 𝐒 according
to the 𝐼 and 𝐸 components (that is, 𝐒𝐼 = 𝐒 ⋅𝐁𝐼 ,𝐒𝐸 = 𝐒 ⋅𝐁𝐸
where 𝐁𝐼 ∈ R𝑁×𝐼 and 𝐁𝐸 ∈ R𝑁×𝐸 are two indicator
matrices showing the intracellular and extracellular indices
of all reactions), we have an equivalent form of Eq. (3),

𝐒𝐼 ⋅ 𝒗𝐼 + 𝐒𝐸 ⋅ 𝒗𝐸 = 0

• Among all 21 extracellular fluxes 𝒗𝐸 , 14 of them are known
to be irreversible, which requires

𝒗𝐸,𝑖𝑟 = 𝐁𝑖𝑟 ⋅ 𝒗𝐸 ≥ 0, (4)

where 𝐁𝑖𝑟 ∈ R𝐸𝑖𝑟×𝐸 is an indicator matrix containing the
indices of irreversible fluxes among all extracellular ones.

Notice that the combination of Equations Eqs. (2) and (3) con-
sists of 38 independent linear equations, while the unknown
variable 𝒗 is only 35-dimensional, leading to an overdetermined
system To address this issue, one can choose to satisfy some
equations exactly, and others approximately (e.g. in a least
squares sense). This leads to two substantially different ap-
proaches, the ‘‘kinetic-based’’ and the ‘‘stoichiometric-based’’,
for computing intracellular flux rates 𝒗𝐼 and extracellular 𝒗𝐸 It
is important to state that these two approaches will, in general,
lead to substantially different dynamic evolution for the same
initial conditions of a metabolic kinetic scheme.

(a) The kinetic-based approach: we satisfy the kinetic equa-
tions Eq. (2), and approximately satisfy the stoichiometric
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equations Eq. (3), which leads to

⎧

⎪

⎨

⎪

⎩

𝒗𝐼 = �̂�𝐼 ,

𝒗𝐸 = argmin𝒗𝐸 ‖𝐒𝐼 ⋅ �̂�𝐼 + 𝐒𝐸 ⋅ 𝒗𝐸‖22, s.t. 𝐁𝑖𝑟 ⋅ 𝒗𝐸 ≥ 0.

(5)

Here, we realize that the optimization problem is a linear
least-squares problem with constraints (which implies it
is actually a convex optimization problem). Moreover, if
we ignored the constraints, we would be able to obtain
an analytical solution for 𝒗𝐸 by computing the pseudo
inverse of 𝐒𝐸 :

𝒗𝐸 = −(𝐒𝐸 )+ ⋅ 𝐒𝐼 ⋅ �̂�𝐼 .

(b) The stoichiometric-based approach
(Nolan and Lee, 2011): we satisfy the stoichiometric equa-
tions exactly Eq. (3), and then approximately satisfy the
kinetic equations Eq. (2), which leads to

(𝒗𝐼 , 𝒗𝐸 ) = argmin
𝒗𝐼 ,𝒗𝐸

‖𝒗𝐼 − �̂�𝐼‖22, s.t. 𝐒𝐼 ⋅𝒗𝐼 +𝐒𝐸 ⋅𝒗𝐸 = 0,𝐁𝑖𝑟 ⋅𝒗𝐸 ≥ 0.

(6)

This is a least squares optimization problem with linear
constraints. If we ignored the inequality constraints, we
would obtain an analytical solution of (𝒗𝐼 , 𝒗𝐸 ) by the
Lagrange multiplier approach, see Appendix G for details.

To help with the numerics of the two embedded optimization
problems, we in fact rescale the supplied �̂�𝐼 values: divide them
by 1000 to adjust their numerical range to ∼ 1−10 upon entering
either optimization problem, and multiply the resulting fluxes 𝒗𝐼
and 𝒗𝐸 by the same factor before exiting This does not change
the solution, but improves the numerical conditioning.
After the optimization step we have

𝒗 = 𝐁𝐼 ⋅ 𝒗𝐼 + 𝐁𝐸 ⋅ 𝒗𝐸 = 𝒇 (𝓁)
optim(�̂�𝐼 ), (7)

where 𝓁 ∈ {𝑘, 𝑠} indicates whether we are using the kinetic or
stoichiometric approach to finding fluxes.

3. Compose Eqs. (1), (7), and (2) to create
d𝑪
d𝑡

= 𝒇 𝐞𝐪𝐧∶𝐨𝐝𝐞(𝑪 ;𝒇 (𝓁)
optim(𝒇𝐤𝐢𝐧(𝑪 ;𝜶))). (8)

As the fluxes 𝒗 are the reaction rates for each of the 𝐸 + 𝐼
reactions, this follows directly from the stoichiometry of these
reactions.

Whether using the first or the second approach, the resulting set
of equations can subsequently be integrated using an error-controlled
integrator to obtain a full time series of all concentrations, for example,

𝑪(𝑡 = 𝑡𝑛+1) = 𝒇 𝐢𝐧𝐭 (𝑪(𝑡 = 𝑡𝑛);𝒇 𝐞𝐪𝐧∶𝐨𝐝𝐞) =𝑪(𝑡 = 𝑡𝑛)

+ ∫

𝑡𝑛+1

𝑡𝑛
𝒇 𝐞𝐪𝐧∶𝐨𝐝𝐞(𝑪 ; 𝒗(𝑪 ;𝜶)) d𝑡,

(9)

where {𝑡𝑖 ∶ 𝑖 = 0, 1, 2,…} is the set of equal-spaced timestamps. It
is important however to note that rate discontinuities potentially can
(and actually do) arise at time instances when different constraints
become active (see Fig. 3). Note also that typical operating protocols
of bioreactors often call for the addition of species (e.g. nutrients) at
particular time instances, thus leading to temporal discontinuities in
the system states. We will illustrate both these types of discontinuities
below in Section 3.1.
3

Several important contributions on which this paper is based were
established in previous work, beginning with applications to E. coli (Ma-
hadevan et al., 2002) and then proceeding to the more recent mam-
malian biomanufacturing targets (Nolan and Lee, 2011). Beyond the
constraints on our inner (optimization) problem that we showed above,
additional constraints were imposed in Mahadevan et al. (2002) on
their outer (time-integration) problem, such as non-negative metabo-
lites and limits on the rate-of-change of fluxes. In their dynamic (resp.
static) optimization approach (DOA, resp. SOA) they determined fluxes
over an entire trajectory (resp. one trajectory segment, with constant
fluxes). Our simulations can be thought of as a form SOA, with the
segment being a single integration step (as also in Nolan and Lee
(2011)).

Before we start, a note on the computation of model gradients:
many accurate integrators require the system Jacobian as well as
sensitivities w.r.t. parameters. This is also important for the integration
of differential–algebraic systems of equations (differential equations
with equality constraints). Furthermore, these gradients (w.r.t. state
variables and/or parameters) are crucial in identification tasks: training
neural networks to approximate the system equations and/or estimate
their parameters from data. As we described above, our evolution equa-
tions are not simple explicit ordinary differential equations, but rather,
their right-hand side arises as the result of solving an optimization
problem, depending on the current state. This renders the accurate
evaluation of these ODEs (as well as their sensitivity and variational
computations) less straightforward than the explicit right-hand-side
case.

2.2. Black-box model

Our black-box model is a multi-layer perceptron (MLP) embedded
within a numerical integrator scheme (e.g. the forward-Euler scheme or
the Runge–Kutta template), where the MLP (NNb(⋅;𝜽)) is used to learn
the right-hand-side (RHS) of the ODE:

�̃�(𝑡 = 𝑡𝑛+1) = 𝒇 𝐢𝐧𝐭 (𝑪(𝑡 = 𝑡𝑛); NNb) = 𝑪(𝑡 = 𝑡𝑛) + ∫

𝑡𝑛+1

𝑡𝑛
NNb(𝑪 ;𝜽) d𝑡. (10)

The details of generating the datasets can be found in Section 3.1.
Note that here the right-hand-side depends only on the system state;
it is also possible to make the Neural Network Eq. (10) dependent on
physical input parameters (such as feeding conditions or basal gene
expression rates), by including these parameters as additional inputs
to the NN function. This will be important if, at a later stage, one
wishes to optimize operating conditions towards some additional global
objective (e.g. maximal biomass production). This possibility has been
demonstrated in older work (Krischer et al., 1992); it will not be
repeated here.

2.3. White-box and gray-box models

2.3.1. Model structures
In contrast with the black-box model which is purely data-driven,

white-box and gray-box models benefit from existing physical knowl-
edge, leaving only the unknown parts of the model trainable. In this
paper, these two models have structure similar to that of what we deem
the ground-truth biophysical model (see Fig. 1), with changes limited to
the computation of preliminary intracellular fluxes �̂�𝐼 . While the white-
box model assumes that some of the kinetic parameters 𝜶 are unknown
or need calibration, the gray-box model suggests that part of the kinetic
expressions 𝒇𝐤𝐢𝐧 have no known functional form and therefore replaces
them with neural network approximations. It is natural to also construct
a mixed version of the hybrid model that contains both unknown
(‘‘white-box’’) kinetic parameters and unknown (‘‘black-box’’) kinetic
expressions, resulting in an overall gray-box model.

Though the white-box model superficially resembles typical
parameter-fitting problems, due to the presence of the inner opti-
mization step in its evaluation, traditional fitting approaches like
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Fig. 1. White, gray, and black inner architectures. Operations are boxed, data or predictions are unboxed, and notable named intermediates are labeled on edges Color and pattern
are used to distinguish between model pathways that are distinct between the gray-, white-, and black-box approaches, or common to all three.
general linear least-squares cannot be well-adapted into our framework.
Instead, a gradient-based fitting approach will be employed using a
differentiable convex optimization layer as described in Section 2.3.2.
We remind the reader here that, since the original biophysical model
includes two different approaches for computing fluxes (see Eq. (7)),
we also make our white- or gray-box frameworks in two versions: that
is, we use kinetic-version models to learn on the dataset generated from
the kinetic approach, and stoichiometric-version models on the dataset
that came from the stoichiometric approach.

2.3.2. Computation of gradients in convex optimization
For this section in particular, we need to define some terms.
The model refers to the differentiable program used to make predic-

tions: this includes RHS evaluations (white-, gray-, or black-box), per-
haps necessitating an embedded convex optimization program Eq. (5)
or Eq. (6) (ECOP); as well as the use of these RHS in numerical
integration steps.

The inputs for this ECOP include both

constants 𝐒𝐼 ,𝐒𝐸 , and 𝐁𝑖𝑟; and
outputs from

upstream modules �̂�𝐼 (function evaluations).
(11)

All of these will be considered constant for the purpose of solving the
ECOP for each call to the RHS.

Parameters here refers to those quantities which could be modified
by our outer training loop, including both kinetic parameters 𝜶 of
he kinetic equations Eq. (2) (when we perform white box parameter
stimation or gray box parameter estimation); and neural network
arameters 𝜽, i.e. trainable weights and biases (when we train gray box
etworks to recover unknown functional dependencies):

and 𝜽. (12)

e will divide these into trainable and untrainable (fixed) parameters
epending on the particular experiment.

The outputs of the ECOP are the reported converged values of the
ariables the problem solves for, including both

the fluxes 𝒗𝐸 and 𝒗𝐼 ; and, possibly
auxiliary variables (described below) 𝒓.

(13)
4

For the purposes of training, we would like our loss function (see
Eq. (16) described for particular experiments in later sections) to be
differentiable with respect to all of the trainable parameters Eq. (12).
This requires that the model predictions be differentiable, and therefore
for each step in the model to be differentiable, including the ECOP,
with respect to the same.

To enable this in a gradient-based computing framework such as
PyTorch, we turn to the package cvxpylayers which was devel-
oped with such problems in mind (Amos and Kolter, 2017). This
package itself uses cvxpy (a Python-embedded modeling language for
convex optimization problems) (Diamond and Boyd, 2016; Agrawal
et al., 2018, 2019a) and diffcp (a Python package for computing
the derivative of a cone program, which is a special case of convex
programming) (Agrawal et al., 2019c,b; Amos, 2019).

In order for these packages to correctly evaluate the gradient of
the outputs Eq. (13) of the ECOP with respect to all of its inputs
Eq. (11), certain structural characteristics must hold. Specifically, the
problem needs to be rewritten conforming with the rules of Disciplined
Convex Programming (DCP) and of Disciplined Parametrized Program-
ming (DPP). DCP is a system for constructing convex programs that
combines common convex functions (e.g. 𝑥2, |𝑥|) with composition and
combination rules (e.g. 𝑓◦𝑔 is convex if both 𝑓 and 𝑔 are convex;
nonnegative linear combination of convex functions is still convex).
If these rules are followed, the library can automatically determine
whether the full problem is indeed convex.

DPP is a subset of DCP, which further requires that all expressions
of the ECOP are affine with respect to the ECOP inputs Eq. (11). It has
been proved (Agrawal et al., 2019a) that a DPP-supportable convex
program can be invertibly transformed into a cone program (and its
derivative information can be obtained from diffcp). Therefore, DPP
is mainly used in input-dependent convex programming, which allows
the entire program to be differentiable without actually unrolling and
back-propagating through the optimization loop.

Because DCP requires that the expressions in the ECOP be affine
w.r.t. the problem inputs Eq. (11), the product of two inputs is not an
acceptable expression. This means e.g. that (𝐒𝐼 ⋅ �̂�𝐼 + 𝐒𝐸 ⋅ 𝒗𝐸 )𝑇 ⋅ (𝐒𝐼 ⋅
�̂�𝐼 +𝐒𝐸 ⋅𝒗𝐸 ) in the objective function of Eq. (5) has to be reformulated.
This is resolved by the addition of another variable 𝒓 in Eqs. (14) and
(15), and then equality constraints on this additional variable, such
that the newly defined problems are equivalent to the old. Further, in
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the kinetic case, to avoid the direct input product 𝐒𝐼 ⋅ �̂�𝐼 , we need to
include 𝒗𝐼 as an optimization variable, but then upgrade what was a
pre-optimization expression 𝒗𝐼 = �̂�𝐼 from Eq. (5) to an actual equality
constraint in Eq. (14).

In summary, for the kinetic approach, we rewrite Eq. (5) as

min
𝒓,𝒗𝐼 ,𝒗𝐸

‖𝒓‖22

s.t. 𝐁𝑖𝑟 ⋅ 𝒗𝐸 ≥ 0

𝒓 = 𝐒𝐼 ⋅ �̂�𝐼 + 𝐒𝐸 ⋅ 𝒗𝐸
𝒗𝐼 − �̂�𝐼 = 0

(14)

and for the stoichiometric approach, we rewrite Eq. (6) as

min
𝒓,𝒗𝐼 ,𝒗𝐸

‖𝒓‖22

s.t. 𝐁𝑖𝑟 ⋅ 𝒗𝐸 ≥ 0

𝒓 = 𝒗𝐼 − �̂�𝐼
𝐒𝐼 ⋅ �̂�𝐼 + 𝐒𝐸 ⋅ 𝒗𝐸 = 0

(15)

with inputs Eq. (11).
With these changes, the two problems are DPP-compliant; so, we

are able to evaluate derivatives of the problem outputs Eq. (13) (in
particular, the argmins 𝒗𝐼 and 𝒗𝐸) with respect to the problem inputs
Eq. (11) and also evaluate vector-Jacobian products as needed in a
larger PyTorch back propagation to eventually get loss gradients w.r.t.
parameters Eq. (12).

2.4. Auto-regressive loss

For supervised learning of the dynamics underlying time series data,
one approach is to use the ground truth prediction/output from a prior
time step as the input for the current time step, which leads to the
teacher-forcing method (also known as professor-forcing in Goyal et al.
(2016)). Alternatively, we could use the model prediction from the
prior time step as input, which is called ‘‘autoregressive training’’. In
fact, if contiguous data trajectories are divided into episodes of 𝑀 steps
each, and 𝑀 reduced to 2, we see that the first is in fact a special case
of the second. So, in general, we use an autoregressive model structure
(however, see also Eq. (10)), which means the forward pass of the
model can be written as

�̃�(𝑡 = 𝑡𝑖+1) = Model(�̃�(𝑡 = 𝑡𝑖)), �̃�(𝑡 = 𝑡0) = 𝑪(𝑡 = 𝑡0), (16)

where Model can represent the integration of the black-, white- or gray-
box RHS. The mean-squared loss (MSE) between the two time series can
be therefore computed as

MSE({�̃�(𝑡 = 𝑡𝑖)}, {𝑪(𝑡 = 𝑡𝑖)}) =
1

𝐾𝐿

𝐿
∑

𝑗=1
‖�̃�(𝑡 = 𝑡𝑗 ) − 𝑪(𝑡 = 𝑡𝑗 )‖22, (17)

where 𝐿+1 is the length of the dataset {𝑪(𝑡 = 𝑡𝑖) ∶ 𝑖 = 0, 1, 2,… , 𝐿} and
𝐾 = 14 is the dimension the state vector as we have shown in Table 1.

3. Results

In this section, we will describe each of the several computational
experiments tabulated in Table 2 which we performed in this paper. We
first begin by describing the data generation procedure that was used
for each of the parameter-identification and neural-network training
experiments that follow. We include an analysis of the impact of the
constraints in the inner optimization problem, considering events when
constraints switch to (resp. from) active (resp. inactive). We then begin
our actual training experiments with a black-box example. All of our
training experiments include both kinetic and stoichiometric variants.
Subsequently, we perform white-box identification, in both two-free-
parameter and five-free-parameter variants. Finally, we will perform a
mixture of these two tasks with gray-box modeling: First we will use a
neural network to replace one of the kinetic expressions in 𝒇𝐤𝐢𝐧; then
we will repeat this, also allowing one of the physical parameters 𝜶 to
the trainable.
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Table 2
Summaries of computational experiments in this paper.

Experiments Section

Data generation Section 3.1
Black-box Section 3.2
White-box (2 Parameters Unknown) Section 3.3.1
White-box (5 Parameters Unknown) Section 3.3.2
Gray-box (1 Expression Unknown) Section 3.4.1
Gray-box (1 Expression Unknown + 1 Parameter Unknown) Section 3.4.2

Fig. 2. Nominal trajectories (kinetic and stoichiometric) overlaying sampled short-time
flows from perturbed initial conditions. Trajectories for only a few of the 𝐾 variables
are shown Trajectories for all variables are shown in Fig. 15. Color is used to distinguish
between different curves described in the legend.

3.1. Data generation

We begin by simulating short trajectories for a variety of initial
conditions, and collecting these flows as a dataset f or a single set of
parameter values. We then implement the Neural Network model in
PyTorch exactly as described in Section 2.1 and trained to match these
flows.

The dataset consists of 𝑁run transients of the full model Eq. (1), or
equivalently, Eq. (8), from initial conditions (ICs) taken as Gaussian
perturbations around means; the means themselves are sampled uni-
formly (in time) at random along a central nominal trajectory (NT).
The per-variable standard deviations are proportional to the extent of
variation of that variable in the NT. That is, the sample of ICs is given
by

⎧

⎪

⎨

⎪

⎩

𝑪 (𝑖)(𝑡 = 0) =

⎡

⎢

⎢

⎢

⎣

𝐶 (𝑖)
1 (𝑡 = 0) ∼  (�̄�1(𝑡 = 𝑡𝑖), 𝜎1)

⋮

𝐶 (𝑖)
𝐾 (𝑡 = 0) ∼  (�̄�𝐾 (𝑡 = 𝑡𝑖), 𝜎𝐾 )

⎤

⎥

⎥

⎥

⎦

|

|

|

|

|

𝑖 = 1, 2,… , 𝑁run

⎫

⎪

⎬

⎪

⎭

,

(18)

where the nominal trajectory �̄�(𝑡) = (�̄�1(𝑡), �̄�2(𝑡),… , �̄�𝐾 (𝑡))𝑇 starts
from a particular set of initial conditions that were measured during a
laboratory experiment. The feeding events were implemented as state
discontinuities. This nominal trajectory (in both its ‘‘kinetic’’ and its
‘‘stoichiometric’’ integrations) appears in Fig. 2; the ‘‘stoichiometric’’



Computers and Chemical Engineering 183 (2024) 108594

6

T. Cui et al.

Fig. 3. Activity of bound constraints along a sample run for the stoichiometric case, Observe the discontinuities arising in the second derivative (3(b) and 3(d)) of the concentration
evolution. Time derivatives for plotting were estimated by local forward finite differences (FD). Color is used to distinguish between different curves described in the legend.
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Fig. 4. Black-box training results (kinetic). See also Fig. 16 for more detailed results. Color is used to distinguish between different curves described in the legend.
NT stops just before the state goes negative (and thus before any
feeding events have occurred).

Each initial condition from Eq. (18) is then accurately simulated
(with an order 8(5, 3) explicit Runge–Kutta method (Hairer et al.,
1993) with absolute tolerance 10−8 and relative tolerance 10−7) to a
time horizon generally significantly shorter than the entire nominal
trajectory, (circular dots in Figs. 4 and 5) giving us data in the form
of several trajectory ‘‘windows’’, constituting one ‘‘episode’’.

3.1.1. Detecting transitions in constraint activity during simulation
The inner optimization described in Section 2.1 includes bounds

on some of the fluxes computed (lower bounds indicating irreversible
reactions). Depending on the current state of the simulated variables
𝑪 , the optimal unconstrained fluxes may not lie inside the bounded
domain. The constrained optimum will then instead lie on constraint
boundaries (or even possibly intersections of them).

At the onset – or the end – of occurrence of such events, the
trajectory of 𝒗 may/will develop sharp corners. To explore the impact
of this phenomenon on the system dynamics we report, at each timestep
of a simulation, which flux bounds are active and which are not. For
an event-driven version of such simulations we refer the reader to the
package in Gomez et al. (2014), in which several failure modes are
considered (beyond the ones arising in our work), including both an
infeasible inner optimization problem, and a problem with multiple so-
lutions (leading to a set-valued differential equation). In general, events
can be either ‘‘time events’’ or ‘‘state events’’; the first require only
accurately stopping the integration at a particular time. State events, on
the other hand, occur when some condition(s) of the continuous state
become satisfied. In some cases, this can be detected by locating zeros
of some interpolating polynomial(s) (Gomez et al., 2014; Barton, 2000);
further difficulty arises when the event condition cannot be described
by the root of a continuous function (e.g., the case of Fig. 3, in which a
Boolean quantity changes at the event). We intend to explore the proper
analysis of such event detection in future work (as well as the integra-
tion between events, possibly modifying the RHS evaluation between
each pair of events to satisfy the active bounds by construction). We
employ instead a less sophisticated visualization-based method, shown
in Fig. 3: We depict, in Fig. 3, such changes in constraint activity status
alongside the first (3(c), 3(a)) and second (3(d), 3(b)) time derivatives
of two key simulated variables in a temporally aligned fashion. This is
shown here along a short run of the stoichiometric model; a constraint
turning active is marked by a short green tick, and its turning inactive
7

by a brief red tick. Notice the jumps in the second derivative, and the
sharp corners in the first derivative of the concentration evolution.

During this run we observe that three fluxes (7, 32 and 34) had
encounters with their corresponding lower bounds. More specifically,
around 𝑡∗ ≈ 0.5, when the bound for reaction 34 becomes persistently
inactive (thus the corresponding flux moves well away from zero), we
see sharp downward discontinuities in the second time derivative of the
evolutions of both cysteine and glycine. Note that reaction 34 is the
(irreversible) breakdown of NADH (see full stoichiometry matrix in
Appendix F, or the relevant parts of the reaction network diagram
in Nolan and Lee (2011)); and that, at this time, its flux continuously
changes from 0 to positive. We therefore expect, d𝑣34∕d𝑡 may experience
a discontinuity at 𝑡∗. Furthermore, one of the (reversible) reactions that
makes GLY takes NADH as an input. If that reaction rate is positive at
that given moment, one of its inputs suddenly becomes less available.
Therefore, because dGLY∕d𝑡 ∼ −𝑣34, and d𝑣34∕d𝑡 is discontinuous, we
can expect that d(dGLY∕d𝑡)∕d𝑡 will also be discontinuous, and that is
clearly visible in Fig. 3(b).

Such a rationalization can be repeated for CYS, which also relies
on NADH as an input, and which also experiences a discontinuity in
its second derivative (Fig. 3(d)). Note that CYS has a much larger
discontinuity associated with the activation of the lower bound on
flux 32. Note also that GLY has a second discontinuity occurring later
(around 𝑡 1.4); this is related to flux 7, which however involves different
pathways.

3.2. Black-box neural network identification

To demonstrate system identification with no assumed prior knowl-
edge of the system mechanisms, we performed black-box RHS learning,
in which we represent the entire system of ODEs as an end-to-end
neural network.

Since there are two approaches in evaluating Eq. (8) as mentioned
in Section 2.1, we also performed two experiments: one of them used
data generated from the ground-truth kinetic system (sampling every
𝛥𝑡 = 0.1 h over a 𝑡max = 1.2-h horizon, producing 13 steps for each of
the 768 data trajectories), and the other used data generated from the
ground-truth stoichiometric one (with 𝛥𝑡 = 0.1, 𝑡max = 1.2, 13 steps, and
768 data trajectories).

In both cases, the black-box ODE was trained by taking steps of fixed
size 0.01 between the data samples with a Runge–Kutta 4 integrator (the
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Fig. 5. Black-box training results (stoichiometric). See also Fig. 17 for more detailed results. Color is used to distinguish between different curves described in the legend.
black box identification ‘‘does not know’’ about discontinuities in the
model - it smoothly interpolates between data points in time).

As can be seen in Figs. 4 and 5, our black-box neural ODE was able
to fit the data trajectories quite tightly. This validates the underlying
approach, and suggests that such ODEs with inner optimization steps
can be successfully approximated as (possibly slightly ‘‘smoothened’’)
closed-form functions.

3.3. White-box neural network: Parameter estimation

To demonstrate the full-structure physical-parameter estimation set-
ting that we term ‘‘white-box’’ learning, we tried to recover (a) two or
(b) five of the nominal parameter values. Specifically, we performed
simulations at the nominal parameter values, collected the transient
data, considered forty three (resp. forty) of them known, and then
used a gradient-based training method to estimate the values of the
remaining two (resp. five) from the data. Our initial guess (a per-
turbation of the truth) is marked in Fig. 7. For all four of these
numerical experiments, the dataset consisted of 10 short single-Euler-
step ‘‘trajectories’’ each 0.05 h in length (Runge–Kutta integration gave
comparable results, not shown); the network ansatz was also Euler with
a step size of 0.05. Training was 4000 epochs of RMSprop with 1 batch
per epoch.

This demonstrates the use of the algorithms in Amos and Kolter
(2017) to carry out differentiation through the inner optimization prob-
lem of evaluating the equation right-hand-side, discussed in Section 2.1,
enabling gradient-based learning for this experiment, and serving as
an initial validation of the algorithms before the gray-box methods of
Section 3.4 that follow below.

3.3.1. Known model, two unknown parameters
In our first such white-box learning experiment, we trained with

only two unknown parameters from Table 5; we find (Fig. 6) that
we can recover the two parameter values reasonably well. For this
approach, we chose the glucose utilization reaction, since glucose is
one of the major nutrients and sources of energy for the cell; glucose
feeds into many key reactions such as the TCA cycle and leads to
lactate production. A motivation for this initial experiment is to help
visualize the gradient landscape in Fig. 7. We see in Fig. 8 that the
induced gradient dynamics of the learning problem are highly stiff,
making adaptive training methods such as Adam (Kingma and Ba,
8

Fig. 6. Parameter comparison for white-box two-parameter.

2014) an absolute necessity. The training exhibits a two-staged descent,
consisting of (a) first, a fast approach to a deep trough in the parameter
space, and then (b) a slower motion within the trough, with some
oscillations induced by the finite learning step size. Furthermore, in the
Stoichiometric (Type 2) case (Figs. 7(b) and 8(b)), we observe that the
final gradient is so shallow that even Adam takes prohibitively long
to move any appreciable distance within the loss trough. Note that,
although the true 𝜶 values indeed mark a minimum for the optimization
problem posed, as seen in Fig. 7(b), this minimum is extremely shallow,
making the discovery of the true value for 𝜶2 imperfect - for all practical
purposes, the entire ‘‘bottom of the trough’’ leads to a good fit. This is
an instance of what is termed ‘‘model sloppiness’’ (Daniels et al., 2008;
Holiday et al., 2019); along the bottom of the trough the loss function
posed is not strongly sensitive to the parameters, leading to parameter
nonidentifiability.

3.3.2. Known model, five unknown parameters
Next, we repeated the parameter estimation experiment of the

previous section but now with five, rather than two, unknown 𝜶 values.
For this approach we chose the lactate production reaction, since it is
downstream from the glucose utilization reaction; it is also in itself
an important reaction, because lactate is one the key by-products of
cellular metabolism, known to inhibit key reactions such as antibody
production. We find that the numerical values are again recovered
reasonably well (Fig. 9), and with loss dynamics (Fig. 10) similar to
the two-parameter case. An important point to note here is that, while
other parameters selections have not been attempted for the two and
five unknown parameter approaches, we expect that the results of
parameter estimation would depend strongly on the model sensitivity
to parameter perturbations. For example, given that biomass generation
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Fig. 7. Gradient landscape for the white-box, two-parameter case. Kinetic (7(a)) vs. stoichiometric (7(b)) implementation from Section 2.1 The stiff gradient vectorfield leads to
some degree of parameter nonidentifiability.
Fig. 8. Convergence of the training to the final parameter estimates for the white-box, two-parameter case. Kinetic (8(a)) vs. stoichiometric (8(b)) implementation from Section 2.1
See also Fig. 18.
Fig. 9. Parameter comparison for the white-box, five-parameter case.

affects the VCD, which in turn affects the concentrations of all the
dynamically tracked species, we might expect parameters directly asso-
ciated with the biomass generation reaction to have a strong effect on
prediction, and therefore be good candidates for future identification.

3.4. Partially known model: Gray-box identification

For the work in this section, we assumed the expression of �̂�𝐼,2 in
𝒇𝐤𝐢𝐧 was not known: instead, we only knew that it is a function of GLC
and LAC, and we replaced it by a 2-8-8-1 multi-layer perceptron (MLP)
with trainable weights and biases. We embedded this MLP into our
gray-box computation graph visualized in Fig. 1 to make predictions
for loss evaluation.
9

For all four of these experiments, the dataset consisted of 800 single-
Euler-step ‘‘trajectories’’ each 0.05 h in length, The network ansatz was
also Euler with a step size of 0.05. Training was 500 epochs of RMSProp
with 20 batches per epoch.

3.4.1. Partially known model, all parameters known
For our first gray-box experiments we further assumed that the

values of all kinetic parameters used in expressions beyond that for
�̂�𝐼,2 are correct and do not need to be calibrated. We performed
the experiment twice: once with kinetic-based data (data from type-
1 simulations) and with the white portion of our gray-box also based
on the kinetic formulation; and once with stoichiometric data and
formulation. Here again, as with the white box experiment, we decided
to focus on the lactate production/utilization reaction, which affects
other metabolic reactions as well; it represents an important metabolic
process in the cell, and lactate is a crucial by-product of cellular
metabolism. We used our neural-network-identified expression instead
of the ground-truth to compute the flux value �̂�𝐼,2 to be fed into the
inner optimization. Moreover, for the partially known parameters case,
we chose a parameter from the glucose utilization reaction, because it
directly feeds into the lactate generation reaction, and glucose is one
of the key nutrients for the cell.

For each experiment, we find (Figs. 11(a) and 12(a), resp.) that the
learned flux functions are largely reproduced correctly, but there are
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Fig. 10. Convergence of the training to the final parameter estimates for the white-box, five-parameter case. Kinetic (10(a)) vs. stoichiometric (10(b)) implementation from
Section 2.1 See also Fig. 19.
Fig. 11. Comparison of fluxes (ground-truth vs. kinetic gray-box model). Note that the (GLC, LAC) points visited in training are scattered on the surfaces (11(a)) or on the base
plane (11(b)) 11(a): ground-truth and neural net approximations of the fluxes given the inputs of the neural net (GLC and LAC) 11(b): normalized prediction errors (fraction of
max–min of the true function, across the data). Note the relative rotation (for visual clarity) between (11(a)) and (11(b)).
Fig. 12. Comparison of fluxes (ground-truth vs. stoichiometric gray-box model). 12(a): ground-truth and neural net approximations of the fluxes given the neural net inputs, GLC
and LAC. 12(b): normalized prediction errors (fraction of max–min of the true function, across the data.) Note that the (GLC, LAC) points visited in training are scattered on the
surfaces (12(a)) or on the base plane (12(b)). Note again the relative rotation (for visual clarity) between (12(a)) and (12(b)).
discrepancies (relatively flat network predictions) over some parts of
their domain. The greatest percent discrepancy (given in Figs. 11(b)
10
and 12(b), scaled by the spread of true values across the training data)
arises, as one might expect, at locations where the flux is approximately
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Fig. 13. Comparison of fluxes (kinetic ground-truth vs. gray-box model). 13(a): ground-truth and neural net approximations of the fluxes as functions of the learned kinetic
expression inputs, GLC and LAC 13(b): normalized (as in Figs. 11(b) and 12(b)) predicted errors Black data points plotted as in Figs. 11 and 12. 13(c): Ground-truth value and
the recovered value of the kinetic parameter 𝛼1.
Fig. 14. Comparison of fluxes (stoichiometric ground-truth vs. gray-box model). 14(a): ground-truth and neural net approximations of the fluxes as functions of the learned kinetic
expression inputs GLC and LAC 14(b): normalized (as in Figs. 11(b) and 12(b)) predicted errors Black data points plotted as in Figs. 11 and 12. 14(c): Ground-truth value and the
recovered value of the kinetic parameter 𝛼1.
zero. The most obvious explanation for this error is that this region
(small GLC) is not frequently visited by the ground-truth dynamics used
for training data, especially in the stoichiometric case. Finally, errors in
small fluxes lead have less egregious consequences in what we actually
minimize in the network: the prediction error for the concentration
evolution.

3.4.2. Partially known model, partially known parameters
Finally, we combine the physical-parameter (white-box) fitting of

Section 3.3 with the gray-box fitting of Section 3.4.1 to produce a model
in which we train both neural and physical components jointly. For
this experiment, we still assume that the expression for �̂�𝐼,2 in 𝒇𝐤𝐢𝐧
is unknown; but we also additionally assume the value of one kinetic
parameter, 𝛼1, also needs to be calibrated. As before, we also studied
kinetic and stoichiometric versions of the experiment.

As we can see in Figs. 13, 14 and Table 5 the recovery of the
shape of the flux function has similar characteristics to Section 3.4.1;
yet we are also able to rediscover the parameter value accurately,
demonstrating the method’s potential in joint learning with such mixed
physical prior information.

In Table 3, we show some evaluations of right-hand-side timings for
the ODEs evaluated using the alternate paths through Fig. 1. While fur-
ther analysis is out of the scope of this paper, we can see immediately
11
Table 3
Comparison of compute times statistics through the Black box, White box and Gray
box paths in Fig. 1. Times are wall-clock evaluations taken after training. Statistics are
evaluated over about 800 realistic state vectors sampled from the same data used for
training.

Model Minimum (ms) Average (ms)

White box 34.8 42.2
Black box 0.115 0.119
Gray box 12.4 20.3

that black box methods are two orders of magnitude faster than those
relying on an internal optimization step; though all three are still much
faster than real-time.

4. Conclusions and future directions

In this paper, we revisited a mechanistic model of the biochemi-
cal reactions arising in Chinese Hamster Ovary (CHO) cell cultures.
When simulating the dynamics of the model, evaluation of the tem-
poral derivative of this system of equations practically necessitates
the solution of a constrained convex problem at each time step. This
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Table 4
Names and units for all variables 𝑪 = (𝐶1 , 𝐶2 ,… , 𝐶14)𝑇 .
Variables 𝐶1 𝐶2 𝐶3 𝐶4 𝐶5 𝐶6 𝐶7
Abbreviations BIOM ANTI GLC LAC ALA ASN ASP
Names Biomass Antibody Glucose Lactate Alanine Asparagine Aspartate
Units mmol/L mmol/L mmol/L mmol/L mmol/L mmol/L mmol/L
Sample values 1.18 0.0801 30.9 1.36 0.354 5.23 1.21
Kinetic d𝐶𝑖∕d𝑡 2.02 0.0361 −1.76 1.23 0.179 −0.152 −0.097
Stoichiometric d𝐶𝑖∕d𝑡 2.04 0.0668 −1.83 1.2 0.142 −0.153 −0.151
Kinetic - Stoichiometric −0.0116 −0.0307 0.07 0.0336 0.0372 0.00153 0.0536

Sample values 0.332 4.34 1.14 7.74 3.17 2.68 0.483
Kinetic d𝐶𝑖∕d𝑡 −0.00657 −0.997 1.3 −0.904 0.181 0.482 0.875
Stoichiometric d𝐶𝑖∕d𝑡 −0.0274 −0.999 1.05 −0.764 0.163 0.679 0.88
Kinetic - Stoichiometric 0.0208 0.00239 0.242 −0.14 0.0179 −0.197 −0.00501
Table 5
Names and ground-truth values for all parameters 𝜶 = (𝛼1 , 𝛼2 ,… , 𝛼45)𝑇 , as well as the discovered values of several parameters by white-box and gray-box models. Here, meanings
of ‘‘2PK’’ and others can be checked in Table 2.

Numbered symbol 𝛼1 𝛼2 𝛼3 𝛼4 𝛼5 𝛼6 𝛼7 𝛼8 𝛼9
Physical symbol 𝑣𝑚𝑎𝑥1 𝐾𝑖1 𝐾𝑚1 𝑣𝑚𝑎𝑥2𝑓 𝐾𝑚2𝑔𝑙𝑐 𝑣𝑚𝑎𝑥3𝑓 𝑣𝑚𝑎𝑥3𝑟 𝐾𝑚3𝑎𝑙𝑎 𝐾𝑚3𝑔𝑙𝑐
Values (True) 6617.8 87.349 84.982 3490.4 6.3331 950.80 949.28 0.2165 2.0026

Section 3.3.1 Values (WB 2P Kin) 6617.2 87.354
Values (WB 2P Sto) 6643.8 81.666

Section 3.3.2 Values (WB 5P Kin) 6621 87.371 85.025 3489.9 6.3337
Values (WB 5P Sto) 6720.2 82.774 86.327 3487 6.3236

Section 3.4.2 Values (GB Kin) 6617.9
Values (GB Sto) 6594.1

Units mmol/d mmol/L mmol/L mmol/d mmol/L mmol/d mmol/d mmol/L mmol/L

Numbered symbol 𝛼10 𝛼11 𝛼12 𝛼13 𝛼14 𝛼15 𝛼16 𝛼17 𝛼18
Physical symbol 𝑣𝑚𝑎𝑥8𝑓 𝑣𝑚𝑎𝑥8𝑟 𝐾𝑚8𝑔𝑙𝑛 𝐾𝑚8𝑔𝑙𝑢 𝐾𝑚8𝑛ℎ3 𝑣𝑚𝑎𝑥9𝑓 𝑣𝑚𝑎𝑥9𝑟 𝐾𝑚9𝑛ℎ3 𝑣𝑚𝑎𝑥10𝑓
Values (True) 9568.5 415.83 5.9198 2.0582 7.5053 3.3291 7.8132 0.6866 143.32
Units mmol/d mmol/d mmol/L mmol/L mmol/L mmol/d mmol/d mmol/L mmol/d

Numbered symbol 𝛼19 𝛼20 𝛼21 𝛼22 𝛼23 𝛼24 𝛼25 𝛼26 𝛼27
Physical symbol 𝑣𝑚𝑎𝑥10𝑟 𝐾𝑚10𝑎𝑠𝑛 𝐾𝑚10𝑎𝑠𝑝 𝐾𝑚10𝑛ℎ3 𝑣𝑚𝑎𝑥11 𝑣𝑚𝑎𝑥12𝑓 𝑣𝑚𝑎𝑥12𝑟 𝐾𝑚12𝑠𝑒𝑟 𝐾𝑚12𝑔𝑙𝑦
Values (True) 95.194 0.0157 3.5060 0.6301 0.5465 0.6330 92.978 3.0862 0.2020
Units mmol/d mmol/L mmol/L mmol/L mmol/d 1 mmol/d mmol/L mmol/L

Numbered symbol 𝛼28 𝛼29 𝛼30 𝛼31 𝛼32 𝛼33 𝛼34 𝛼35 𝛼36
Physical symbol 𝑣𝑚𝑎𝑥13 𝐾𝑚13 𝑣𝑚𝑎𝑥16 𝐾𝑚16𝑎 𝐾𝑚16𝑏 𝑣𝑚𝑎𝑥17 𝐾𝑖17 𝑣𝑚𝑎𝑥2𝑟 𝐾𝑚2𝑙𝑎𝑐
Values (True) 72.593 1.4396 6316.7 0.9967 0.9901 76.88 46.045 3996.2 4.3040
Units mmol/d mmol/L mmol/d mmol/L mmol/L mmol/d mmol/L mmol/d mmol/L

Numbered symbol 𝛼37 𝛼38 𝛼39 𝛼40 𝛼41 𝛼42 𝛼43 𝛼44 𝛼45
Physical symbol 𝐾𝑚9𝑔𝑙𝑢 𝐾𝑚9𝑔𝑙𝑛 𝐾𝑚11𝑎𝑠𝑝 𝐾𝑚11𝑎𝑠𝑛 𝐾𝑚12𝑛ℎ3 𝐾𝑚16𝑐 𝑣𝑚𝑎𝑥35 𝐾𝑚35𝑎 𝐾𝑚35𝑏
Values (True) 0.7519 4.1330 6.4439 6.5433 0.2607 0.0108 2.371 6.8779 9.1087
Units mmol/L mmol/L mmol/L mmol/L mmol/L mmol/L mmol/d mmol/L mmol/L
‘‘inner optimization’’ can lead to: (a) discontinuities in the second time
derivatives of the evolving concentrations (that is, the solution itself is
C1 as shown in Fig. 3); and (b) difficulties in computing the system
Jacobian, or sensitivity gradients of evolving states with respect to
system parameters.

We then demonstrated how to incorporate such mechanistic phys-
ical knowledge of the model along with data-driven approaches, so
as to identify or calibrate this type of systems. Our hybrid model can
be black-, gray-, or white-box, depending on the portion of physical
laws one is confident about a priori. Importantly, we implemented

modification of traditional neural network/ODE-net architecture in
ur white- and gray-box models based on Amos and Kolter (2017):
his approach can encode the differentiable convex optimization layer
ithin a numerical integrator (which can be considered as an unrolled

ecurrent neural network) so as to overcome the obstacles of computing
odel gradients. The potential of this type of data-driven models to

dentify metabolic network dynamics from data, and perform regression
asks, was illustrated.

The approaches and model architectures that we designed an im-
lemented in this paper should be of broad applicability in fields
f engineering where the right-hand-side of the evolution equations
ntrinsically involves an optimization problem; robotics control, or dif-
erentiable Model Predictive Control (Amos et al., 2018) come to mind.
n the metabolic engineering domain, such algorithms can be usefully
12
combined with downstream optimization problems, for the design of
experiments, the optimization of feed media composition, or the design
of optimal feeding/harvesting policies in bioreactor operation. More-
over, we can incorporate the CHO cell model developed in this paper
into a broader bioreactor model for estimation of macroscopic trends,
including eventually the effects of spatial inhomogeneity that may arise
due to improper mixing due to scaling up (Lara et al., 2006; Ozturk,
1996), as well as the effects of population heterogeneity. Indeed, we
have published on the behavior of heterogeneous and asynchronous
agents in a reactor system (Thiem et al., 2021; Psarellis et al., 2023;
Choi et al., 2016) while other authors have presented this concept
specifically for cell culture bioreactors but not for dynamic FBA models
such as ours (Karra et al., 2010; Bayrak et al., 2015).
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Table 6
Expressions of all reactions in the metabolic network. Note that we distinguish between cytosolic and mitochondrial NADH, while all metabolites are intracellular unless indicated
otherwise. Reactions with ‘‘↔’’ are reversible, while ‘‘→’’ is used if and only if the reaction is irreversible. ID numbers are colored as described in Appendix F. Fluxes (numeric
columns) are evaluated at the same state as used in Table 4.

ID Kin. Stoi. Kin. - Stoi. Reaction

1 1.18 2.22 −1.04 G6P → 2PYR + 3ATP + 2NADH(Cytosolic)
2 0.0801 −0.901 0.981 PYR + NADH(Cytosolic) ↔ LAC
3 30.9 28.6 2.32 PYR + GLU ↔ ALA + AKG
4 1.024 × 10−12 1.153 × 10−15 1.023 × 10−12 PYR + OXA → AKG + 2CO2 + 2NADH(Mitochondrial)
5 22.5 20.4 2.06 AKG → MAL + CO2 + NADH(Mitochondrial) + FADH2 + ATP
6 1.151 × 10−13 7.718 ×10−16 1.144 × 10−13 MAL → OXA + NADH(Mitochondrial)
7 25.7 22.3 3.35 MAL → PYR + CO2
8 1.36 1.36 −2.852 × 10−5 GLN ↔ GLU + NH3
9 0.354 3.78 −3.42 AKG + NH3 + NADH(Mitochondrial) ↔ GLU
10 5.23 5.23 −3.530 × 10−5 ASN ↔ ASP + NH3
11 1.21 1.82 −0.61 ASP + AKG ↔ OXA + GLU
12 0.332 −0.597 0.929 SER + CO2 + NH3 + NADH(Cytosolic) ↔ 2GLY
13 4.34 3.41 0.929 Cystine + NADH(Cytosolic) → 2Cysteine
14 14.8 19.4 −4.55 NADH(Mitochondrial) + 0.5O2 → 2.5ATP
15 16.6 20.5 −3.89 FADH2 + 0.5O2 → 1.5ATP

16 1.14 4.27 −3.13 0.0838ALA + 0.041ASN + 0.0804ASP + 8.6825ATP + 0.0261Cysteine + 0.452G6P+0.0873GLN + 0.056GLY +
0.427OXA + 0.096SER → BIOM + 0.004FADH2+0.0082GLU + 0.4445MAL + 0.6391NADH(Mitochondrial) + 0.2085PYR

17 7.74 7.34 0.399 0.0614ALA + 0.0344ASN + 0.0389ASP + 9.2ATP + 0.024Cysteine+0.0479GLU + 0.0449GLN+ 0.0719GLY + 0.1SER → ANTI
18 3.17 4.27 −1.1 BIOM → BIOM(Extracellular)
19 2.68 7.34 −4.66 ANTI → ANTI(Extracellular)
20 4.28 2.89 1.39 GLC(Extracellular) + ATP → G6P
21 0.0801 −0.901 0.981 LAC ↔ LAC(Extracellular)
22 30.3 27.8 2.56 ALA ↔ ALA(Extracellular)
23 5.54 5.65 −0.115 ASN(Extracellular) → ASN
24 3.62 2.78 0.846 ASP ↔ ASP(Extracellular)
25 5.756 × 10−15 3.41 −3.41 Cystine(Extracellular) + GLU → Cystine + GLU(Extracellular)
26 1.8 2.06 −0.255 GLN(Extracellular) ↔ GLN
27 0.0431 −1.96 2.01 GLY ↔ GLY(Extracellular)
28 0.249 3.07 −2.82 SER(Extracellular) → SER
29 5.9 3.4 2.5 NH3 ↔ NH3(Extracellular)
30 19.9 23.2 −3.26 O2(Extracellular) ↔ O2
31 47.8 43.4 4.47 CO2 → CO2(Extracellular)
32 4.23 3.27 0.965 2Cysteine + O2 → 2Cystine
33 8.539 × 10−15 −22.8 22.8 GLU → GLU(Extracellular)
34 −5.6 4.368 × 10−15 −5.6 NADH(Cytosolic) → 0.5NADH(Mitochondrial) + 0.5FADH2
35 0.483 −1.26 1.75 G6P + ATP + 2GLU → 2NADH(Cytosolic) + 2SER + 2AKG
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ppendix A. Physical variables and kinetic parameters

See Tables 4 and 5.
13
Appendix B. The ODE expressions 𝐝𝑪
𝐝𝒕 = 𝒇 𝐞𝐪𝐧∶𝐨𝐝𝐞(𝑪; 𝒗(𝑪;𝜶))

d𝐶1
d𝑡

= 𝑣18
𝐶14
1000

d𝐶2
d𝑡

= 𝑣19
𝐶14
1000

d𝐶3
d𝑡

= −𝑣20
𝐶14
1000

d𝐶4
d𝑡

= 𝑣21
𝐶14
1000

d𝐶5
d𝑡

= 𝑣22
𝐶14
1000

d𝐶6
d𝑡

= −𝑣23
𝐶14
1000

d𝐶7
d𝑡

= 𝑣24
𝐶14
1000

d𝐶8
d𝑡

= −𝑣25
𝐶14
1000

d𝐶9
d𝑡

= −𝑣26
𝐶14
1000

d𝐶10
d𝑡

= 𝑣27
𝐶14
1000

d𝐶11
d𝑡

= −𝑣28
𝐶14
1000

d𝐶12
d𝑡

= 𝑣29
𝐶14
1000

d𝐶13 = (𝑣 + 𝑣 )
𝐶14
d𝑡 25 33 1000
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�̂�𝐼,1 =
𝑣𝑚𝑎𝑥1

GLC
𝐾𝑚1

1 + LAC
𝐾𝑖1

+ GLC
𝐾𝑚1

+ LAC
𝐾𝑖1

GLC
𝐾𝑚1

�̂�𝐼,2 =
𝑣𝑚𝑎𝑥2𝑓

GLC
𝐾𝑚2𝑔𝑙𝑐

− 𝑣𝑚𝑎𝑥2𝑟
LAC

𝐾𝑚2𝑙𝑎𝑐

1 + GLC
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+ LAC
𝐾𝑚2𝑙𝑎𝑐

�̂�𝐼,3 =
𝑣𝑚𝑎𝑥3𝑓

GLC
𝐾𝑚3𝑔𝑙𝑐

− 𝑣𝑚𝑎𝑥3𝑟
ALA

𝐾𝑚3𝑎𝑙𝑎

1 + GLC
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𝑣𝑚𝑎𝑥8𝑓

GLN
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GLU
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NH3
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NH3
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NH3
𝐾𝑚9𝑛ℎ3
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GLU

𝐾𝑚9𝑔𝑙𝑢
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)
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+ GLN
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ASN
𝐾𝑚10𝑎𝑠𝑛

− 𝑣𝑚𝑎𝑥10𝑟
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𝐾𝑚10𝑎𝑠𝑝

NH3
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𝐾𝑚10𝑎𝑠𝑛
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𝐾𝑚10𝑎𝑠𝑝

+ NH3
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𝐾𝑚10𝑎𝑠𝑝

NH3
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�̂�𝐼,8 =
𝑣𝑚𝑎𝑥12𝑓 ⋅ �̂�𝐼,10

SER
𝐾𝑚12𝑠𝑒𝑟

NH3
𝐾𝑚12𝑛ℎ3

− 𝑣𝑚𝑎𝑥12𝑟(
GLY

𝐾𝑚12𝑔𝑙𝑦
)2

1 + SER
𝐾𝑚12𝑠𝑒𝑟

+ GLY
𝐾𝑚12𝑔𝑙𝑦

+ NH3
𝐾𝑚12𝑛ℎ3

+ ( GLY
𝐾𝑚12𝑔𝑙𝑦

)2

�̂�𝐼,9 =
𝑣𝑚𝑎𝑥13

CYS
𝐾𝑚13

1 + CYS
𝐾𝑚13

�̂�𝐼,10 =
𝑣𝑚𝑎𝑥16

GLN
𝐾𝑚16𝑎

ASN
𝐾𝑚16𝑏

ALA
𝐾𝑚16𝑐

1 + GLN
𝐾𝑚16𝑎

+ ASN
𝐾𝑚16𝑏

+ ALA
𝐾𝑚16𝑐

+ GLN
𝐾𝑚16𝑎

ASN
𝐾𝑚16𝑏

+ GLN
𝐾𝑚16𝑎

ALA
𝐾𝑚16𝑐

+ ASN
𝐾𝑚16𝑏

ALA
𝐾𝑚16𝑐

+ GLN
𝐾𝑚16𝑎

ASN
𝐾𝑚16𝑏

ALA
𝐾𝑚16𝑐

�̂�𝐼,11 =
𝑣𝑚𝑎𝑥17
1 + LAC

𝐾𝑖17

�̂�𝐼,12 = �̂�𝐼,10
�̂�𝐼,13 = �̂�𝐼,11

�̂�𝐼,14 =
𝑣𝑚𝑎𝑥35

GLC
𝐾𝑚35𝑎

( GLU
𝐾𝑚35𝑏

)2

1 + GLC
𝐾𝑚35𝑎

+ GLU
𝐾𝑚35𝑏

+ ( GLU
𝐾𝑚35𝑏

)2

Box I.
d𝐶14
d𝑡

=
d𝐶1
d𝑡

2.31
− 0.003𝐶14

ppendix C. List of all reactions

See Table 6.

ppendix D. The kinetic expressions �̂�𝑰 = 𝒇𝐤𝐢𝐧(𝑪;𝜶)

See Box I.

ppendix E. Deviations in kinetic expressions from Nolan and Lee
2011)

All kinetically defined intracellular reactions have been modeled
14

sing the Michaelis Menten format, based on kinetic expressions from
Nolan and Lee (Nolan and Lee, 2011). Some of the modifications
are summarized below and will be described in detail in a separate
publication (Khare et al. to be published).

The temperature dependent constants 𝑇𝐶 which were used to scale
the maximum forward reaction rate - 𝑣𝑚𝑎𝑥, have been removed from the
kinetic expressions as have the inhibition exponential constants 𝑒𝑥𝑝𝑖.
Secondly, the redox variable 𝑅 which was used to account for the redox
state of the cell in the reaction kinetics was removed. Instead, reactions
were modeled solely based on the extracellular metabolites with con-
sumption and production rates being dependent on the concentrations
of the associated extracellular metabolites. Reaction stoichiometries
were revised and additional reactions were included based on literature
and 13C-labeled (intracellular and extracellular) metabolite tracking
data. Reasons for the modifications are listed below:

• Reaction 1 (corresponding to �̂�𝐼,1): G6P → 2PYR + 3ATP+2NADH
Temperature dependent constant 𝑇𝐶1 and inhibition exponen-
tial constant 𝑒𝑥𝑝1 (which is also temperature dependent) were

removed from the kinetic expression.
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Fig. 15. Nominal trajectories overlaid on sampled short-time flows from perturbed initial conditions. Color is used to distinguish between different curves described in the legend.
• Reaction 2 (corresponding to �̂�𝐼,2): PYR + NADH ↔ LAC
Redox variable 𝑅 removed and reaction made continuous.

• Reaction 3 (corresponding to �̂�𝐼,3): PYR + GLU ↔ ALA + AKG
Temperature constant 𝑇𝐶3𝑏 removed.

• Reaction 8 (corresponding to �̂�𝐼,4): GLN ↔ GLU + NH3
Temperature constant 𝑇𝐶8 removed.

• Reaction 9 (corresponding to �̂�𝐼,5): AKG + NH3 + NADH ↔ GLU
Dependence on intracellular metabolite AKG (not dynamically
tracked) removed, to make reaction expression adhere to
Michaelis Menten kinetics.

• Reaction 10 (corresponding to �̂�𝐼,6): ASN ↔ ASP + NH3
Temperature dependent constant 𝑇𝐶10 removed from kinetic ex-
pression.

• Reaction 11 (corresponding to �̂�𝐼,7): ASP + AKG ↔ OXA + GLU
The reaction expression has been changed to be irreversible.

• Reaction 12 (corresponding to �̂�𝐼,8): SER + CO2 + NH3 + NADH
↔ 2GLY
Forward reaction made dependent on ammonia in addition to
serine.

• Reaction 13 (corresponding to �̂�𝐼,9): Cystine + NADH → 2Cysteine
Variable 𝑟, which is temperature dependent, has been removed.
15
• Reaction 16 (corresponding to �̂�𝐼,10): Biomass production
Temperature constant 𝑇𝐶16 and temperature dependency
removed.

• Reaction 17 (corresponding to �̂�𝐼,11): Antibody synthesis
Exponential inhibition constant 𝑒𝑥𝑝17 removed.

• Reaction 33: Removed from our expressions since we have de-
fined expressions for only intracellular reactions as Michaelis–
Menten and not transport reactions. The transport reactions are
all calculated stoichiometrically.

• Reaction 35 (corresponding to �̂�𝐼,14): G6P + ATP + 2GLU
→ 2NADH(Cytosolic) + 2SER + 2AKG
This reaction was added based on the presence of the serine
synthesis pathway (SSP) originating from glycolysis.

Appendix F. The stoichiometric matrix 𝐒

Blue: indices of intracellular fluxes
Olive Overlined: indices of reversible extracellular fluxes
Red Underlined: indices of irreversible extracellular fluxes

See Box II.
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35
AKG 0 0 1 1 −1 0 0 0 −1 0 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2
ALA 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 −0.0838 −0.0614 0 0 0 0 −1 0 0 0 0 0 0 0 0 0 0 0 0 0
ANTI 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
ASN 0 0 0 0 0 0 0 0 0 −1 0 0 0 0 0 −0.041 −0.0344 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
ASP 0 0 0 0 0 0 0 0 0 1 −1 0 0 0 0 −0.0804 −0.0389 0 0 0 0 0 0 −1 0 0 0 0 0 0 0 0 0 0 0
ATP 3 0 0 0 1 0 0 0 0 0 0 0 0 2.5 1.5 −8.6825 −9.2 0 0 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1

BIOM 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
CO2 0 0 0 2 1 0 1 0 0 0 0 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1 0 0 0 0

Cysteine 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 −0.0261 −0.024 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −2 0 0 0
Cystine 0 0 0 0 0 0 0 0 0 0 0 0 −1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
FADH2 0 0 0 0 1 0 0 0 0 0 0 0 0 0 −1 0.004 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.5 0

G6P −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −0.452 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1
GLU 0 0 −1 0 0 0 0 1 1 0 1 0 0 0 0 0.0082 −0.0479 0 0 0 0 0 0 0 −1 0 0 0 0 0 0 0 −1 0 −2
GLN 0 0 0 0 0 0 0 −1 0 0 0 0 0 0 0 −0.0873 −0.0449 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
GLY 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 −0.056 −0.0719 0 0 0 0 0 0 0 0 0 −1 0 0 0 0 0 0 0 0
LAC 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
MAL 0 0 0 0 1 −1 −1 0 0 0 0 0 0 0 0 0.4445 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

NADH (Cytosolic) 2 −1 0 0 0 0 0 0 0 0 0 −1 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1 2
NADH (Mitochondrial) 0 0 0 2 1 1 0 0 −1 0 0 0 0 −1 0 0.6391 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.5 0

NH3 0 0 0 0 0 0 0 1 −1 1 0 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1 0 0 0 0 0 0
O2 0 0 0 0 0 0 0 0 0 0 0 0 0 −0.5 −0.5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 −1 0 0 0

OXA 0 0 0 −1 0 1 0 0 0 0 1 0 0 0 0 −0.427 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
PYR 2 −1 −1 −1 0 0 1 0 0 0 0 0 0 0 0 0.2085 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
SER 0 0 0 0 0 0 0 0 0 0 0 −1 0 0 0 −0.096 −0.1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 2

⎤

⎥

⎥

⎥

⎥

⎥

⎥
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⎥
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⎥
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⎥
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⎥
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⎥
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⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

.

Box II.
Fig. 16. Black-box predictions all variables (Kinetic (Type 1)). See also Fig. 4. Color is used to distinguish between different curves described in the legend.
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Fig. 17. Black-box predictions; all variables (Stoichiometric (Type 2)). Color is used to distinguish between different curves described in the legend.
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ppendix G. Closed-form solution for stoichiometric-based ap-
roach (w/o inequality bounds)

The objective function for Equation Eq. (6) could be rewritten as:

𝒗𝐼 − �̂�𝐼‖22 = 𝒗𝑇𝐼 ⋅ 𝒗𝐼 − 2�̂�𝐼 ⋅ 𝒗𝐼 + �̂�𝑇𝐼 ⋅ �̂�𝐼 . (19)

otice that the last term of Eq. (19) is not the function of 𝒗𝐼 or
𝐸 , which will be further dropped, and lead to a revised form of the
ptimization problem:

min
𝒗𝐼 ,𝒗𝐸

𝒗𝑇𝐼 ⋅ 𝒗𝐼 − 2�̂�𝐼 ⋅ 𝒗𝐼 , s.t. 𝐒𝐼 ⋅ 𝒗𝐼 + 𝐒𝐸 ⋅ 𝒗𝐸 = 0. (20)

n order to solve this optimization problem, we define the Lagrangian
unction

= 𝒗𝑇𝐼 ⋅ 𝒗𝐼 − 2�̂�𝐼 ⋅ 𝒗𝐼 + 𝜸𝑇 ⋅ (𝐒𝐼 ⋅ 𝒗𝐼 + 𝐒𝐸 ⋅ 𝒗𝐸 ), (21)

here 𝜸 ∈ R𝑀 is the vector of Lagrange multiplier. A necessary
ondition for 𝒗𝐼 to be an extremum is
𝜕
𝜕𝒗𝐼

= 2𝒗𝐼 − 2�̂�𝐼 + 𝐒𝑇𝐼 𝜸 = 0. (22)

necessary condition for 𝒗𝐸 to be an extremum is
𝜕
𝜕𝒗𝐸

= 𝐒𝑇𝐸𝜸 = 0. (23)

necessary condition for 𝜸 to be an extremum is just the constraint
𝜕
𝜕𝜸

= 𝐒𝐼 ⋅ 𝒗𝐼 + 𝐒𝐸 ⋅ 𝒗𝐸 = 0. (24)

otice that Eqs. (22), (23) and (24) are linear equations of 𝒗𝐸 , 𝒗𝐼 and
, which leads to a linear system of 𝐸 + 𝐼 + 𝑀 = 21 + 14 + 24 = 59
17

b

quations and variables:

2𝐈𝐼 0 𝐒𝑇𝐼
0 0 𝐒𝑇𝐸
𝐒𝐼 𝐒𝐸 0

⎤

⎥

⎥

⎥

⎦

⎡

⎢

⎢

⎢

⎣

𝒗𝐼
𝒗𝐸
𝜸

⎤

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎣

2�̂�𝐼
0

0

⎤

⎥

⎥

⎥

⎦

, (25)

here 𝐈𝐼 ∈ R𝐼×𝐼 is the identity matrix. As we computed that the
eterminant of

=

⎡

⎢

⎢

⎢

⎣

2𝐈𝐼 0 𝐒𝑇𝐼
0 0 𝐒𝑇𝐸
𝐒𝐼 𝐒𝐸 0

⎤

⎥

⎥

⎥

⎦

(26)

s nonzero (aka 𝐀 is invertible), we know Eq. (25) has a unique solution:

𝒗𝐼
𝒗𝐸
𝜸

⎤

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎣

2𝐈𝐼 0 𝐒𝑇𝐼
0 0 𝐒𝑇𝐸
𝐒𝐼 𝐒𝐸 0

⎤

⎥

⎥

⎥

⎦

−1
⎡

⎢

⎢

⎢

⎣

2�̂�𝐼
0

0

⎤

⎥

⎥

⎥

⎦

. (27)

f we denote 𝐈𝐸 ∈ R𝐸×𝐸 as an identity matrix, then

𝒗𝐼
𝒗𝐸

]

=

[

𝐈𝐼 0 0

0 𝐈𝐸 0

] ⎡

⎢

⎢

⎢

⎣

𝒗𝐼
𝒗𝐸
𝜸

⎤

⎥

⎥

⎥

⎦

=

[

𝐈𝐼 0 0

0 𝐈𝐸 0

] ⎡

⎢

⎢

⎢

⎣

2𝐈𝐼 0 𝐒𝑇𝐼
0 0 𝐒𝑇𝐸
𝐒𝐼 𝐒𝐸 0

⎤

⎥

⎥

⎥

⎦

−1
⎡

⎢

⎢

⎢

⎣

2�̂�𝐼
0

0

⎤

⎥

⎥

⎥

⎦

(28)

s the closed-form expression for stoichiometric-based approach (w/o

ounds).
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Fig. 18. Absolute parameter error history. (Two-parameter white-box case.)
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Fig. 19. Absolute parameter error history, five-parameter white-box case.
Appendix H. Additional figures

See Figs. 15–19.
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